» Articles » PMID: 26725083

The Acidic Domain of the Endothelial Membrane Protein GPIHBP1 Stabilizes Lipoprotein Lipase Activity by Preventing Unfolding of Its Catalytic Domain

Overview
Journal Elife
Specialty Biology
Date 2016 Jan 4
PMID 26725083
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia.

Citing Articles

Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives.

Felix M, Waerner T, Lakatos D, Reisinger B, Fischer S, Garidel P Front Bioeng Biotechnol. 2025; 12:1490276.

PMID: 39867473 PMC: 11760601. DOI: 10.3389/fbioe.2024.1490276.


Lipoprotein Lipase: Structure, Function, and Genetic Variation.

Perera S, Wang J, McIntyre A, Hegele R Genes (Basel). 2025; 16(1).

PMID: 39858602 PMC: 11764694. DOI: 10.3390/genes16010055.


Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

Biswas A, Arshid S, Kristensen K, Jorgensen T, Ploug M J Lipid Res. 2025; 66(2):100745.

PMID: 39814316 PMC: 11869522. DOI: 10.1016/j.jlr.2025.100745.


A negatively charged cluster in the disordered acidic domain of GPIHBP1 provides selectivity in the interaction with lipoprotein lipase.

Risti R, Reimund M, Seeba N, Lookene A Sci Rep. 2024; 14(1):19639.

PMID: 39179764 PMC: 11344153. DOI: 10.1038/s41598-024-70468-6.


Macromolecular Interactions of Lipoprotein Lipase (LPL).

Wheless A, Gunn K, Neher S Subcell Biochem. 2024; 104:139-179.

PMID: 38963487 DOI: 10.1007/978-3-031-58843-3_8.


References
1.
Gardsvoll H, Hansen L, Jorgensen T, Ploug M . A new tagging system for production of recombinant proteins in Drosophila S2 cells using the third domain of the urokinase receptor. Protein Expr Purif. 2007; 52(2):384-94. DOI: 10.1016/j.pep.2006.11.013. View

2.
Beigneux A, Davies B, Gin P, Weinstein M, Farber E, Qiao X . Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 2007; 5(4):279-91. PMC: 1913910. DOI: 10.1016/j.cmet.2007.02.002. View

3.
Gin P, Yin L, Davies B, Weinstein M, Ryan R, Bensadoun A . The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons. J Biol Chem. 2008; 283(43):29554-62. PMC: 2662032. DOI: 10.1074/jbc.M802579200. View

4.
Beigneux A, Franssen R, Bensadoun A, Gin P, Melford K, Peter J . Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol. 2009; 29(6):956-62. PMC: 2811263. DOI: 10.1161/ATVBAHA.109.186577. View

5.
Lin L, Gardsvoll H, Huai Q, Huang M, Ploug M . Structure-based engineering of species selectivity in the interaction between urokinase and its receptor: implication for preclinical cancer therapy. J Biol Chem. 2010; 285(14):10982-92. PMC: 2856303. DOI: 10.1074/jbc.M109.093492. View