» Articles » PMID: 26718484

Quantum Effects in the Nonlinear Response of Graphene Plasmons

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2016 Jan 1
PMID 26718484
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The ability of graphene to support long-lived, electrically tunable plasmons that interact strongly with light, combined with its highly nonlinear optical response, has generated great expectations for application of the atomically thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Here we show that finite-size effects produce large contributions that increase the nonlinear response of nanostructured graphene to significantly higher levels than those predicted by classical theories. We base our analysis on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation. While classical and quantum descriptions agree well for the linear response when either the plasmon energy is below the Fermi energy or the size of the structure exceeds a few tens of nanometers, this is not always the case for the nonlinear response, and in particular, third-order Kerr-type nonlinearities are generally underestimated by the classical theory. Our results reveal the complex quantum nature of the optical response in nanostructured graphene, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.

Citing Articles

Giant enhancement of second harmonic generation from monolayer 2D materials placed on photonic moiré superlattice.

Ning T, Zhao L, Huo Y, Cai Y, Ren Y Nanophotonics. 2024; 12(21):4009-4016.

PMID: 39635636 PMC: 11501670. DOI: 10.1515/nanoph-2023-0124.


Low-Power Threshold Optical Bistability Enabled by Hydrodynamic Kerr Nonlinearity of Free Carriers in Heavily Doped Semiconductors.

Hu H, Alvarez-Perez G, Otomalo T, Ciraci C ACS Photonics. 2024; 11(11):4812-4817.

PMID: 39584035 PMC: 11583963. DOI: 10.1021/acsphotonics.4c01308.


Compact terahertz harmonic generation in the Reststrahlenband using a graphene-embedded metallic split ring resonator array.

Di Gaspare A, Song C, Schiattarella C, Li L, Salih M, Davies A Nat Commun. 2024; 15(1):2312.

PMID: 38485950 PMC: 10940712. DOI: 10.1038/s41467-024-45267-2.


The enhancement of nonlinear optical properties of azulene-based nanographene by N atoms: a finishing touch.

Zhang Y, Yang C, Ma J, Tian W Chem Sci. 2024; 15(6):2100-2111.

PMID: 38332838 PMC: 10848778. DOI: 10.1039/d3sc04443b.


Topologically enhanced nonlinear optical response of graphene nanoribbon heterojunctions.

Deng H, Qu Z, He Y, Huang C, Panoiu N, Ye F Quantum Front. 2023; 2(1):11.

PMID: 37780230 PMC: 10533637. DOI: 10.1007/s44214-023-00036-y.