» Articles » PMID: 26711238

Regulation of Bone Metabolism by Wnt Signals

Overview
Journal J Biochem
Specialty Biochemistry
Date 2015 Dec 30
PMID 26711238
Citations 96
Authors
Affiliations
Soon will be listed here.
Abstract

Wnt ligands play a central role in the development and homeostasis of various organs through β-catenin-dependent and -independent signalling. The crucial roles of Wnt/β-catenin signals in bone mass have been established by a large number of studies since the discovery of a causal link between mutations in the low-density lipoprotein receptor-related protein 5 (Lrp5) gene and alternations in human bone mass. The activation of Wnt/β-catenin signalling induces the expression of osterix, a transcription factor, which promotes osteoblast differentiation. Furthermore, this signalling induces the expression of osteoprotegerin, an osteoclast inhibitory factor in osteoblast-lineage cells to prevent bone resorption. Recent studies have also shown that Wnt5a, a typical non-canonical Wnt ligand, enhanced osteoclast formation. In contrast, Wnt16 inhibited osteoclast formation through β-catenin-independent signalling. In this review, we discussed the current understanding of the Wnt signalling molecules involved in bone formation and resorption.

Citing Articles

The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration.

Luczak J, Palusinska M, Matak D, Pietrzak D, Nakielski P, Lewicki S Int J Mol Sci. 2024; 25(23).

PMID: 39684476 PMC: 11641768. DOI: 10.3390/ijms252312766.


The skeleton: an overlooked regulator of systemic glucose metabolism in cancer?.

Ronghe R, Tavares A Front Oncol. 2024; 14:1481241.

PMID: 39588310 PMC: 11586348. DOI: 10.3389/fonc.2024.1481241.


Bone metabolism in complex regional pain syndrome.

Harnik M, Sodmann A, Hartmannsberger B, Kindl G, Becker J, Reinhold A Pain Rep. 2024; 9(6):e1217.

PMID: 39574486 PMC: 11581760. DOI: 10.1097/PR9.0000000000001217.


Microenvironment-optimized gastrodin-functionalized scaffolds orchestrate asymmetric division of recruited stem cells in endogenous bone regeneration.

Pan S, Li Y, Wang L, Guan Y, Xv K, Li Q J Nanobiotechnology. 2024; 22(1):722.

PMID: 39563380 PMC: 11577785. DOI: 10.1186/s12951-024-02886-7.


Molecular Signaling Pathways and MicroRNAs in Bone Remodeling: A Narrative Review.

Singh M, Singh P, Singh B, Sharma K, Kumar N, Singh D Diseases. 2024; 12(10).

PMID: 39452495 PMC: 11507001. DOI: 10.3390/diseases12100252.


References
1.
Chang M, Kramer I, Huber T, Kinzel B, Guth-Gundel S, Leupin O . Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci U S A. 2014; 111(48):E5187-95. PMC: 4260537. DOI: 10.1073/pnas.1413828111. View

2.
Kramer I, Loots G, Studer A, Keller H, Kneissel M . Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res. 2009; 25(2):178-89. PMC: 3153379. DOI: 10.1359/jbmr.090730. View

3.
Yamane T, Kunisada T, Tsukamoto H, Yamazaki H, Niwa H, Takada S . Wnt signaling regulates hemopoiesis through stromal cells. J Immunol. 2001; 167(2):765-72. DOI: 10.4049/jimmunol.167.2.765. View

4.
Enomoto M, Hayakawa S, Itsukushima S, Ren D, Matsuo M, Tamada K . Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene. 2009; 28(36):3197-208. DOI: 10.1038/onc.2009.175. View

5.
Okamoto M, Udagawa N, Uehara S, Maeda K, Yamashita T, Nakamichi Y . Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis. Sci Rep. 2014; 4:4493. PMC: 3967152. DOI: 10.1038/srep04493. View