» Articles » PMID: 26703476

Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in Human γD-Crystallin Protein

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2015 Dec 26
PMID 26703476
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the β1 and β2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation.

Citing Articles

Cataract-prone variants of γD-crystallin populate a conformation with a partially unfolded N-terminal domain under native conditions.

Volz S, Malone J, Guseman A, Gronenborn A, Marqusee S Proc Natl Acad Sci U S A. 2025; 122(6):e2410860122.

PMID: 39899721 PMC: 11831119. DOI: 10.1073/pnas.2410860122.


Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales.

Tapia-Rojo R, Mora M, Garcia-Manyes S Nat Protoc. 2024; 19(6):1779-1806.

PMID: 38467905 PMC: 7616092. DOI: 10.1038/s41596-024-00965-5.


A Single-Molecule Strategy to Capture Non-native Intramolecular and Intermolecular Protein Disulfide Bridges.

Mora M, Board S, Languin-Cattoen O, Masino L, Stirnemann G, Garcia-Manyes S Nano Lett. 2022; 22(10):3922-3930.

PMID: 35549281 PMC: 9136921. DOI: 10.1021/acs.nanolett.2c00043.


Insights to Human γD-Crystallin Unfolding by NMR Spectroscopy and Molecular Dynamics Simulations.

Hsueh S, Wang S, Chen S, Wang C, Wu W, Lin T Int J Mol Sci. 2022; 23(3).

PMID: 35163513 PMC: 8836049. DOI: 10.3390/ijms23031591.


Single-molecule optical tweezers reveals folding steps of the domain swapping mechanism of a protein.

Bustamante A, Rivera R, Floor M, Babul J, Baez M Biophys J. 2021; 120(21):4809-4818.

PMID: 34555362 PMC: 8595740. DOI: 10.1016/j.bpj.2021.09.026.


References
1.
Kosinski-Collins M, Flaugh S, King J . Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Sci. 2004; 13(8):2223-35. PMC: 2279819. DOI: 10.1110/ps.04627004. View

2.
Borgia A, Williams P, Clarke J . Single-molecule studies of protein folding. Annu Rev Biochem. 2008; 77:101-25. DOI: 10.1146/annurev.biochem.77.060706.093102. View

3.
Mayr E, Jaenicke R, Glockshuber R . Domain interactions and connecting peptides in lens crystallins. J Mol Biol. 1994; 235(1):84-8. DOI: 10.1016/s0022-2836(05)80017-8. View

4.
Wetzel R . Mutations and off-pathway aggregation of proteins. Trends Biotechnol. 1994; 12(5):193-8. DOI: 10.1016/0167-7799(94)90082-5. View

5.
Bennett M, Schlunegger M, Eisenberg D . 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995; 4(12):2455-68. PMC: 2143041. DOI: 10.1002/pro.5560041202. View