» Articles » PMID: 26692422

Large Ligand Folding Distortion in an Oxomolybdenum Donor-Acceptor Complex

Overview
Journal Inorg Chem
Specialty Chemistry
Date 2015 Dec 23
PMID 26692422
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Interligand charge transfer is examined in the novel metallo-dithiolene complex MoO(SPh)2((i)Pr2Dt(0)) (where (i)Pr2Dt(0) = N,N'-isopropyl-piperazine-2,3-dithione). The title complex displays a remarkable 70° "envelope"-type fold of the five-membered dithiolene ring, which is bent upward toward the terminal oxo ligand. A combination of electronic absorption and resonance Raman spectroscopies have been used to probe the basic electronic structure responsible for the large fold-angle distortion. The intense charge transfer transition observed at ∼18 000 cm(-1) is assigned as a thiolate → dithione ligand-to-ligand charge transfer (LL'CT) transition that also possesses Mo(IV) → dithione charge transfer character. Strong orbital mixing between occupied and virtual orbitals with Mo(x(2)-y(2)) orbital character is derived from a strong pseudo Jahn-Teller effect, which drives the large fold-angle distortion to yield a double-well potential in the electronic ground state.

Citing Articles

Dithione, the antipodal redox partner of ene-1,2-dithiol ligands and their metal complexes.

Basu P, Colston K, Mogesa B Coord Chem Rev. 2023; 409.

PMID: 38094102 PMC: 10718511. DOI: 10.1016/j.ccr.2020.213211.


Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis.

Burgmayer S, Kirk M Molecules. 2023; 28(22).

PMID: 38005178 PMC: 10673323. DOI: 10.3390/molecules28227456.


Influence of the ligand-field on EPR parameters of cis- and trans-isomers in Mo systems relevant to molybdenum enzymes: Experimental and density functional theory study.

Nemykin V, Sabin J, Kail B, Upadhyay A, Hendrich M, Basu P J Inorg Biochem. 2023; 245:112228.

PMID: 37149488 PMC: 10330323. DOI: 10.1016/j.jinorgbio.2023.112228.


Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes.

Gates C, Varnum H, Getty C, Loui N, Chen J, Kirk M Inorg Chem. 2022; 61(35):13728-13742.

PMID: 36000991 PMC: 10544801. DOI: 10.1021/acs.inorgchem.2c01234.


Spectroscopic Studies of Mononuclear Molybdenum Enzyme Centers.

Kirk M, Hille R Molecules. 2022; 27(15).

PMID: 35956757 PMC: 9370002. DOI: 10.3390/molecules27154802.


References
1.
Matz K, Mtei R, Rothstein R, Kirk M, Burgmayer S . Study of molybdenum(4+) quinoxalyldithiolenes as models for the noninnocent pyranopterin in the molybdenum cofactor. Inorg Chem. 2011; 50(20):9804-15. PMC: 3268461. DOI: 10.1021/ic200783a. View

2.
Millar A, Doonan C, Smith P, Nemykin V, Basu P, Young C . Oxygen atom transfer in models for molybdenum enzymes: isolation and structural, spectroscopic, and computational studies of intermediates in oxygen atom transfer from molybdenum(VI) to phosphorus(III). Chemistry. 2005; 11(11):3255-67. DOI: 10.1002/chem.200401101. View

3.
McNaughton R, Helton M, Cosper M, Enemark J, Kirk M . Nature of the oxomolybdenum-thiolate pi-bond: implications for Mo-S bonding in sulfite oxidase and xanthine oxidase. Inorg Chem. 2004; 43(5):1625-37. DOI: 10.1021/ic034206n. View

4.
Hille R, Hall J, Basu P . The mononuclear molybdenum enzymes. Chem Rev. 2014; 114(7):3963-4038. PMC: 4080432. DOI: 10.1021/cr400443z. View

5.
Sengar R, Nemykin V, Basu P . Synthesis, electrochemistry, geometric and electronic structure of oxo-molybdenum compounds involved in an oxygen atom transferring system. J Inorg Biochem. 2008; 102(4):748-56. PMC: 2396449. DOI: 10.1016/j.jinorgbio.2007.11.010. View