Germaine I, Richey N, Huttel M, McElwee-White L
J Mater Chem C Mater. 2024; 12(10):3526-3534.
PMID: 38756620
PMC: 11095848.
DOI: 10.1039/d3tc03755j.
Burgmayer S, Kirk M
Molecules. 2023; 28(22).
PMID: 38005178
PMC: 10673323.
DOI: 10.3390/molecules28227456.
Burgmayer S
Molecules. 2023; 28(21).
PMID: 37959716
PMC: 10649979.
DOI: 10.3390/molecules28217296.
Gates C, Varnum H, Getty C, Loui N, Chen J, Kirk M
Inorg Chem. 2022; 61(35):13728-13742.
PMID: 36000991
PMC: 10544801.
DOI: 10.1021/acs.inorgchem.2c01234.
Kirk M, Lepluart J, Yang J
J Inorg Biochem. 2022; 235:111907.
PMID: 35932756
PMC: 10575615.
DOI: 10.1016/j.jinorgbio.2022.111907.
Interligand communication in a metal mediated LL'CT system - a case study.
Dille S, Colston K, Ratvasky S, Pu J, Basu P
RSC Adv. 2021; 11(39):24381-24386.
PMID: 34354823
PMC: 8285364.
DOI: 10.1039/d1ra04716g.
Metal-Dithiolene Bonding Contributions to Pyranopterin Molybdenum Enzyme Reactivity.
Yang J, Enemark J, Kirk M
Inorganics (Basel). 2021; 8(3).
PMID: 34327225
PMC: 8318340.
DOI: 10.3390/inorganics8030019.
Molybdenum and Tungsten Cofactors and the Reactions They Catalyze.
Kirk M, Kc K
Met Ions Life Sci. 2020; 20.
PMID: 32851830
PMC: 8176780.
DOI: 10.1515/9783110589757-015.
Modeling Pyran Formation in the Molybdenum Cofactor: Protonation of Quinoxalyl-Dithiolene Promoting Pyran Cyclization.
Gisewhite D, Nagelski A, Cummins D, Yap G, Burgmayer S
Inorg Chem. 2019; 58(8):5134-5144.
PMID: 30942584
PMC: 6572731.
DOI: 10.1021/acs.inorgchem.9b00194.
Implications of Pyran Cyclization and Pterin Conformation on Oxidized Forms of the Molybdenum Cofactor.
Gisewhite D, Yang J, Williams B, Esmail A, Stein B, Kirk M
J Am Chem Soc. 2018; 140(40):12808-12818.
PMID: 30200760
PMC: 6542470.
DOI: 10.1021/jacs.8b05777.
Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase.
Dong C, Yang J, Reschke S, Leimkuhler S, Kirk M
Inorg Chem. 2017; 56(12):6830-6837.
PMID: 28590138
PMC: 7909741.
DOI: 10.1021/acs.inorgchem.7b00028.
Large Ligand Folding Distortion in an Oxomolybdenum Donor-Acceptor Complex.
Yang J, Mogesa B, Basu P, Kirk M
Inorg Chem. 2015; 55(2):785-93.
PMID: 26692422
PMC: 4889894.
DOI: 10.1021/acs.inorgchem.5b02252.
Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase.
Wu S, Rothery R, Weiner J
J Biol Chem. 2015; 290(41):25164-73.
PMID: 26297003
PMC: 4599019.
DOI: 10.1074/jbc.M115.665422.
Solvent-Dependent Pyranopterin Cyclization in Molybdenum Cofactor Model Complexes.
Williams B, Gisewhite D, Kalinsky A, Esmail A, Burgmayer S
Inorg Chem. 2015; 54(17):8214-22.
PMID: 25942001
PMC: 4752123.
DOI: 10.1021/acs.inorgchem.5b00532.
Recent developments in the study of molybdoenzyme models.
Basu P, Burgmayer S
J Biol Inorg Chem. 2015; 20(2):373-83.
PMID: 25578808
PMC: 4336637.
DOI: 10.1007/s00775-014-1228-0.
Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
Rothery R, Weiner J
J Biol Inorg Chem. 2014; 20(2):349-72.
PMID: 25267303
DOI: 10.1007/s00775-014-1194-6.
Pyranopterin dithiolene distortions relevant to electron transfer in xanthine oxidase/dehydrogenase.
Dong C, Yang J, Leimkuhler S, Kirk M
Inorg Chem. 2014; 53(14):7077-9.
PMID: 24979205
PMC: 4215880.
DOI: 10.1021/ic500873y.
A Valence Bond Description of Dizwitterionic Dithiolene Character in an Oxomolybdenum-bis(dithione).
Mtei R, Perera E, Mogesa B, Stein B, Basu P, Kirk M
Eur J Inorg Chem. 2013; 2011(36):5467-5470.
PMID: 23956683
PMC: 3742805.
DOI: 10.1002/ejic.201101084.
Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.
Williams B, Fu Y, Yap G, Burgmayer S
J Am Chem Soc. 2012; 134(48):19584-7.
PMID: 23157708
PMC: 3526347.
DOI: 10.1021/ja310018e.
Pyranopterin conformation defines the function of molybdenum and tungsten enzymes.
Rothery R, Stein B, Solomonson M, Kirk M, Weiner J
Proc Natl Acad Sci U S A. 2012; 109(37):14773-8.
PMID: 22927383
PMC: 3443133.
DOI: 10.1073/pnas.1200671109.