» Articles » PMID: 26678084

Scalable Synthesis and Post-modification of a Mesoporous Metal-organic Framework Called NU-1000

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2015 Dec 19
PMID 26678084
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

The synthesis of NU-1000, a highly robust mesoporous (containing pores >2 nm) metal-organic framework (MOF), can be conducted efficiently on a multigram scale from inexpensive starting materials. Tetrabromopyrene and (4-(ethoxycarbonyl)phenyl)boronic acid can easily be coupled to prepare the requisite organic strut with four metal-binding sites in the form of four carboxylic acids, while zirconyl chloride octahydrate is used as a precursor for the well-defined metal oxide clusters. NU-1000 has been reported as an excellent candidate for the separation of gases, and it is a versatile scaffold for heterogeneous catalysis. In particular, it is ideal for the catalytic deactivation of nerve agents, and it shows great promise as a new generic platform for a wide range of applications. Multiple post-synthetic modification protocols have been developed using NU-1000 as the parent material, making it a potentially useful scaffold for several catalytic applications. The procedure for the preparation of NU-1000 can be scaled up reliably, and it is suitable for the production of 50 g of the tetracarboxylic acid containing organic linker and 200 mg-2.5 g of NU-1000. The entire synthesis is performed without purification by column chromatography and can be completed within 10 d.

Citing Articles

Recyclable Enzymatic Hydrolysis with Metal-Organic Framework Stabilized Humicola insolens Cutinase (HiC) for Potential PET Upcycling.

Wu A, Sha F, Su S, Farha O Chem Bio Eng. 2025; 1(9):798-804.

PMID: 39974180 PMC: 11792908. DOI: 10.1021/cbe.4c00101.


Unraveling metal effects on CO uptake in pyrene-based metal-organic frameworks.

P Domingues N, Pougin M, Li Y, Moubarak E, Jin X, Uran F Nat Commun. 2025; 16(1):1516.

PMID: 39934127 PMC: 11814143. DOI: 10.1038/s41467-025-56296-w.


Biomedical Metal-Organic Framework Materials: Perspectives and Challenges.

Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith J, Lammers T Adv Funct Mater. 2024; 34(43).

PMID: 39726715 PMC: 7617264. DOI: 10.1002/adfm.202308589.


Reaction-Type-Dependent Behavior of Redox-Hopping in MOFs─Does Charge Transport Have a Preferred Direction?.

Yan M, Bowman Z, Knepp Z, Peterson A, Fredin L, Morris A J Phys Chem Lett. 2024; 15(48):11919-11926.

PMID: 39572009 PMC: 11626502. DOI: 10.1021/acs.jpclett.4c01674.


Hydrodynamic Fluidic Pump Empowered Sensitive Recognition and Active Transport of Hydrogen Peroxide in 1D Channels.

Liu S, Guo Y, Gong Y, Wei Y, Hu Q, Yu L Adv Sci (Weinh). 2024; 12(1):e2408755.

PMID: 39527459 PMC: 11714159. DOI: 10.1002/advs.202408755.


References
1.
Deria P, Li S, Zhang H, Snurr R, Hupp J, Farha O . A MOF platform for incorporation of complementary organic motifs for CO2 binding. Chem Commun (Camb). 2015; 51(62):12478-81. DOI: 10.1039/c5cc04808g. View

2.
So M, Wiederrecht G, Mondloch J, Hupp J, Farha O . Metal-organic framework materials for light-harvesting and energy transfer. Chem Commun (Camb). 2015; 51(17):3501-10. DOI: 10.1039/c4cc09596k. View

3.
Suh M, Park H, Prasad T, Lim D . Hydrogen storage in metal-organic frameworks. Chem Rev. 2011; 112(2):782-835. DOI: 10.1021/cr200274s. View

4.
Katz M, Mondloch J, Totten R, Park J, Nguyen S, Farha O . Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. Angew Chem Int Ed Engl. 2013; 53(2):497-501. DOI: 10.1002/anie.201307520. View

5.
Deria P, Mondloch J, Tylianakis E, Ghosh P, Bury W, Snurr R . Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. J Am Chem Soc. 2013; 135(45):16801-4. DOI: 10.1021/ja408959g. View