» Articles » PMID: 26643973

SF3B1 Mutant MDS-initiating Cells May Arise from the Haematopoietic Stem Cell Compartment

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Dec 9
PMID 26643973
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Despite the recent evidence of the existence of myelodysplastic syndrome (MDS) stem cells in 5q-MDS patients, it is unclear whether haematopoietic stem cells (HSCs) could also be the initiating cells in other MDS subgroups. Here we demonstrate that SF3B1 mutation(s) in our cohort of MDS patients with ring sideroblasts can arise from CD34(+)CD38(-)CD45RA(-)CD90(+)CD49f(+) HSCs and is an initiating event in disease pathogenesis. Xenotransplantation of SF3B1 mutant HSCs leads to persistent long-term engraftment restricted to myeloid lineage. Moreover, genetically diverse evolving subclones of mutant SF3B1 exist in mice, indicating a branching multi-clonal as well as ancestral evolutionary paradigm. Subclonal evolution in mice is also seen in the clinical evolution in patients. Sequential sample analysis shows clonal evolution and selection of the malignant driving clone leading to AML transformation. In conclusion, our data show SF3B1 mutations can propagate from HSCs to myeloid progeny, therefore providing a therapeutic target.

Citing Articles

SF3B1: from core splicing factor to oncogenic driver.

Bak-Gordon P, Manley J RNA. 2025; 31(3):314-332.

PMID: 39773890 PMC: 11874996. DOI: 10.1261/rna.080368.124.


Mis-splicing of Mitotic Regulators Sensitizes SF3B1-Mutated Human HSCs to CHK1 Inhibition.

Sarchi M, Clough C, Crosse E, Kim J, Baquero Galvis L, Aydinyan N Blood Cancer Discov. 2024; 5(5):353-370.

PMID: 38856693 PMC: 11369594. DOI: 10.1158/2643-3230.BCD-23-0230.


Understanding iron homeostasis in MDS: the role of erythroferrone.

Abba M, Riabov V, Nowak D, Hofmann W, Boch T Front Oncol. 2024; 14:1404817.

PMID: 38835379 PMC: 11148345. DOI: 10.3389/fonc.2024.1404817.


Influence of donor-recipient sex on engraftment of normal and leukemia stem cells in xenotransplantation.

Mian S, Ariza-McNaughton L, Anjos-Afonso F, Guring R, Jackson S, Kizilors A Hemasphere. 2024; 8(5):e80.

PMID: 38774656 PMC: 11107397. DOI: 10.1002/hem3.80.


Therapeutic targeting of leukemia stem cells in acute myeloid leukemia.

Barbosa K, Deshpande A Front Oncol. 2023; 13:1204895.

PMID: 37601659 PMC: 10437214. DOI: 10.3389/fonc.2023.1204895.


References
1.
Shackleton M, Quintana E, Fearon E, Morrison S . Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009; 138(5):822-9. DOI: 10.1016/j.cell.2009.08.017. View

2.
Mardis E, Ding L, Dooling D, Larson D, McLellan M, Chen K . Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009; 361(11):1058-66. PMC: 3201812. DOI: 10.1056/NEJMoa0903840. View

3.
Camaschella C . Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment. Semin Hematol. 2009; 46(4):371-7. DOI: 10.1053/j.seminhematol.2009.07.001. View

4.
Ye K, Schulz M, Long Q, Apweiler R, Ning Z . Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009; 25(21):2865-71. PMC: 2781750. DOI: 10.1093/bioinformatics/btp394. View

5.
Tefferi A, Vardiman J . Myelodysplastic syndromes. N Engl J Med. 2009; 361(19):1872-85. DOI: 10.1056/NEJMra0902908. View