» Articles » PMID: 26601260

Unraveling the Storage Mechanism in Organic Carbonyl Electrodes for Sodium-ion Batteries

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2015 Nov 25
PMID 26601260
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Organic carbonyl compounds represent a promising class of electrode materials for secondary batteries; however, the storage mechanism still remains unclear. We take Na2C6H2O4 as an example to unravel the mechanism. It consists of alternating Na-O octahedral inorganic layer and π-stacked benzene organic layer in spatial separation, delivering a high reversible capacity and first coulombic efficiency. The experiment and calculation results reveal that the Na-O inorganic layer provides both Na(+) ion transport pathway and storage site, whereas the benzene organic layer provides electron transport pathway and redox center. Our contribution provides a brand-new insight in understanding the storage mechanism in inorganic-organic layered host and opens up a new exciting direction for designing new materials for secondary batteries.

Citing Articles

Understanding pillar chemistry in potassium-containing polyanion materials for long-lasting sodium-ion batteries.

Liu W, Cui W, Yi C, Xia J, Shang J, Hu W Nat Commun. 2024; 15(1):9889.

PMID: 39543206 PMC: 11564968. DOI: 10.1038/s41467-024-54317-8.


Preparation of green high-performance biomass-derived hard carbon materials from bamboo powder waste.

Yin T, Zhang Z, Xu L, Li C, Han D ChemistryOpen. 2024; 13(5):e202300178.

PMID: 38214441 PMC: 11095150. DOI: 10.1002/open.202300178.


Prospects of organic electrode materials for practical lithium batteries.

Lu Y, Chen J Nat Rev Chem. 2023; 4(3):127-142.

PMID: 37128020 DOI: 10.1038/s41570-020-0160-9.


A low-cost and high-loading viologen-based organic electrode for rechargeable lithium batteries.

Chen M, Liu L, Zhang P, Chen H RSC Adv. 2022; 11(39):24429-24435.

PMID: 35479055 PMC: 9036681. DOI: 10.1039/d1ra03068j.


Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries.

Wang Z, Fan Q, Guo W, Yang C, Fu Y Adv Sci (Weinh). 2021; 9(1):e2103632.

PMID: 34716685 PMC: 8728824. DOI: 10.1002/advs.202103632.


References
1.
Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z . High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun (Camb). 2012; 48(27):3321-3. DOI: 10.1039/c2cc17129e. View

2.
Armand M, Tarascon J . Building better batteries. Nature. 2008; 451(7179):652-7. DOI: 10.1038/451652a. View

3.
Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J . All organic sodium-ion batteries with Na₄C₈H₂O₆. Angew Chem Int Ed Engl. 2014; 53(23):5892-6. DOI: 10.1002/anie.201400032. View

4.
Kresse , Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter. 1996; 54(16):11169-11186. DOI: 10.1103/physrevb.54.11169. View

5.
Dunn B, Kamath H, Tarascon J . Electrical energy storage for the grid: a battery of choices. Science. 2011; 334(6058):928-35. DOI: 10.1126/science.1212741. View