Unraveling the Storage Mechanism in Organic Carbonyl Electrodes for Sodium-ion Batteries
Authors
Affiliations
Organic carbonyl compounds represent a promising class of electrode materials for secondary batteries; however, the storage mechanism still remains unclear. We take Na2C6H2O4 as an example to unravel the mechanism. It consists of alternating Na-O octahedral inorganic layer and π-stacked benzene organic layer in spatial separation, delivering a high reversible capacity and first coulombic efficiency. The experiment and calculation results reveal that the Na-O inorganic layer provides both Na(+) ion transport pathway and storage site, whereas the benzene organic layer provides electron transport pathway and redox center. Our contribution provides a brand-new insight in understanding the storage mechanism in inorganic-organic layered host and opens up a new exciting direction for designing new materials for secondary batteries.
Liu W, Cui W, Yi C, Xia J, Shang J, Hu W Nat Commun. 2024; 15(1):9889.
PMID: 39543206 PMC: 11564968. DOI: 10.1038/s41467-024-54317-8.
Yin T, Zhang Z, Xu L, Li C, Han D ChemistryOpen. 2024; 13(5):e202300178.
PMID: 38214441 PMC: 11095150. DOI: 10.1002/open.202300178.
Prospects of organic electrode materials for practical lithium batteries.
Lu Y, Chen J Nat Rev Chem. 2023; 4(3):127-142.
PMID: 37128020 DOI: 10.1038/s41570-020-0160-9.
A low-cost and high-loading viologen-based organic electrode for rechargeable lithium batteries.
Chen M, Liu L, Zhang P, Chen H RSC Adv. 2022; 11(39):24429-24435.
PMID: 35479055 PMC: 9036681. DOI: 10.1039/d1ra03068j.
Wang Z, Fan Q, Guo W, Yang C, Fu Y Adv Sci (Weinh). 2021; 9(1):e2103632.
PMID: 34716685 PMC: 8728824. DOI: 10.1002/advs.202103632.