» Articles » PMID: 26555370

Bioengineered Heparins and Heparan Sulfates

Overview
Specialty Pharmacology
Date 2015 Nov 12
PMID 26555370
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates.

Citing Articles

Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy.

Sultana R, Kamihira M Pharmaceuticals (Basel). 2024; 17(10).

PMID: 39459002 PMC: 11510354. DOI: 10.3390/ph17101362.


Butyrate Increases Heparin Synthesis and Storage in Human Mast Cells.

Alam S, Yan Z, Verma N, Unsworth L, Kulka M Cells. 2024; 13(15.

PMID: 39120272 PMC: 11311861. DOI: 10.3390/cells13151241.


Bioengineered production of glycosaminoglycans and their analogues.

Jin W, Zhang F, Linhardt R Syst Microbiol Biomanuf. 2024; 1(2):123-130.

PMID: 38524245 PMC: 10960223. DOI: 10.1007/s43393-020-00011-x.


Heparin Oligosaccharides as Vasoactive Intestinal Peptide Inhibitors via their Binding Process Characterization.

Li M, Xue Y, Chi L, Jin L Curr Protein Pept Sci. 2024; 25(6):480-491.

PMID: 38284716 DOI: 10.2174/0113892037287189240122110819.


Biomedical applications of engineered heparin-based materials.

Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S Bioact Mater. 2023; 31:87-118.

PMID: 37609108 PMC: 10440395. DOI: 10.1016/j.bioactmat.2023.08.002.


References
1.
Xiong J, Bhaskar U, Li G, Fu L, Li L, Zhang F . Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin. J Biotechnol. 2013; 167(3):241-7. PMC: 3780768. DOI: 10.1016/j.jbiotec.2013.06.018. View

2.
DeAngelis P, Liu J, Linhardt R . Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains. Glycobiology. 2013; 23(7):764-77. PMC: 3671772. DOI: 10.1093/glycob/cwt016. View

3.
Bick R, Frenkel E, Walenga J, Fareed J, Hoppensteadt D . Unfractionated heparin, low molecular weight heparins, and pentasaccharide: basic mechanism of actions, pharmacology, and clinical use. Hematol Oncol Clin North Am. 2005; 19(1):1-51, v. DOI: 10.1016/j.hoc.2004.09.003. View

4.
Stringer S . The role of heparan sulphate proteoglycans in angiogenesis. Biochem Soc Trans. 2006; 34(Pt 3):451-3. DOI: 10.1042/BST0340451. View

5.
Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A . Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol. 2008; 26(6):669-75. PMC: 3491566. DOI: 10.1038/nbt1407. View