» Articles » PMID: 38664445

Control of Polymers' Amorphous-crystalline Transition Enables Miniaturization and Multifunctional Integration for Hydrogel Bioelectronics

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Apr 25
PMID 38664445
Authors
Affiliations
Soon will be listed here.
Abstract

Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.

Citing Articles

Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo.

Huang S, Xiao R, Lin S, Wu Z, Lin C, Jang G Nat Commun. 2025; 16(1):1127.

PMID: 39875371 PMC: 11775234. DOI: 10.1038/s41467-025-56450-4.


Recent Development of Fibrous Hydrogels: Properties, Applications and Perspectives.

Luo W, Ren L, Hu B, Zhang H, Yang Z, Jin L Adv Sci (Weinh). 2024; 12(1):e2408657.

PMID: 39530645 PMC: 11714238. DOI: 10.1002/advs.202408657.


Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites.

Kim S, Shin Y, Han J, Kim H, Sunwoo S Gels. 2024; 10(10).

PMID: 39451267 PMC: 11506957. DOI: 10.3390/gels10100614.

References
1.
Park S, Yuk H, Zhao R, Yim Y, Woldeghebriel E, Kang J . Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat Commun. 2021; 12(1):3435. PMC: 8187649. DOI: 10.1038/s41467-021-23802-9. View

2.
Sahasrabudhe A, Rupprecht L, Orguc S, Khudiyev T, Tanaka T, Sands J . Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat Biotechnol. 2023; 42(6):892-904. PMC: 11180606. DOI: 10.1038/s41587-023-01833-5. View

3.
Markovic T, Pedersen C, Massaly N, Vachez Y, Ruyle B, Murphy C . Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior. Nat Neurosci. 2021; 24(11):1601-1613. PMC: 8556343. DOI: 10.1038/s41593-021-00924-3. View

4.
Saccone M, Gallivan R, Narita K, Yee D, Greer J . Additive manufacturing of micro-architected metals via hydrogel infusion. Nature. 2022; 612(7941):685-690. PMC: 9713131. DOI: 10.1038/s41586-022-05433-2. View

5.
Wu Y, Wu M, Vazquez-Guardado A, Kim J, Zhang X, Avila R . Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat Commun. 2022; 13(1):5571. PMC: 9500026. DOI: 10.1038/s41467-022-32947-0. View