Control of Polymers' Amorphous-crystalline Transition Enables Miniaturization and Multifunctional Integration for Hydrogel Bioelectronics
Overview
Authors
Affiliations
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.
Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo.
Huang S, Xiao R, Lin S, Wu Z, Lin C, Jang G Nat Commun. 2025; 16(1):1127.
PMID: 39875371 PMC: 11775234. DOI: 10.1038/s41467-025-56450-4.
Recent Development of Fibrous Hydrogels: Properties, Applications and Perspectives.
Luo W, Ren L, Hu B, Zhang H, Yang Z, Jin L Adv Sci (Weinh). 2024; 12(1):e2408657.
PMID: 39530645 PMC: 11714238. DOI: 10.1002/advs.202408657.
Kim S, Shin Y, Han J, Kim H, Sunwoo S Gels. 2024; 10(10).
PMID: 39451267 PMC: 11506957. DOI: 10.3390/gels10100614.