» Articles » PMID: 26497626

Resveratrol Prevents Alveolar Bone Loss in an Experimental Rat Model of Periodontitis

Overview
Journal Acta Biomater
Publisher Elsevier
Date 2015 Oct 27
PMID 26497626
Citations 78
Authors
Affiliations
Soon will be listed here.
Abstract

Statement Of Significance: The aims of this study were to investigate how resveratrol modulates cellular responses and the mechanisms related to this modulation in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (hGFs) and protects rats against alveolar bone disruption in an experimental periodontitis model. Our findings suggest that resveratrol protects rats from periodontitic tissue damage by inhibiting inflammatory responses and by stimulating antioxidant defense systems. On the basis of our experiment studies, we proposed that resveratrol could be used as novel bioactive materials or therapeutic drug for the treatment of periodontitis or other inflammatory bone diseases like osteoporosis, arthritis etc. Furthermore, it could be also used for the modification or coating of implant materials as an antiinflammatory molecules which will help to accelerate bone formation. There are a few of reports suggesting antioxidant and anti-inflammatory potentials of resveratrol. However, our results highlight the cellular mechanisms by which resveratrol inhibits LPS-mediated cellular damages using human-originated gingival fibroblasts and also support the potential of resveratrol to suppress periodontitis-mediated tissue damages. We believe that the present findings might improve a clinical approach of using of resveratrol on human, although further detailed experiments will be needed.

Citing Articles

Ferroptosis and cuproptosis in periodontitis: recent biological insights and therapeutic advances.

Zheng T, Lu F, Wu P, Chen Y, Zhang R, Li X Front Immunol. 2025; 16:1526961.

PMID: 40066457 PMC: 11891063. DOI: 10.3389/fimmu.2025.1526961.


Nanomedicine's shining armor: understanding and leveraging the metal-phenolic networks.

Tang Z, Huang Z, Huang Y, Huang M, Liu H, Du J J Nanobiotechnology. 2025; 23(1):158.

PMID: 40025537 PMC: 11874145. DOI: 10.1186/s12951-025-03210-7.


Changes in MMP-9, T-SOD and SIRT-1 levels after non-surgical periodontal treatment.

Iyigun S, Gorgulu N, Dogan B BMC Oral Health. 2025; 25(1):262.

PMID: 39972299 PMC: 11837309. DOI: 10.1186/s12903-025-05610-5.


Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways.

Tkaczenko H, Kurhaluk N Int J Mol Sci. 2025; 26(3).

PMID: 39940866 PMC: 11817741. DOI: 10.3390/ijms26031098.


Nanotherapies Based on ROS Regulation in Oral Diseases.

Luo X, Zhang Y, Zeng Y, Yang D, Zhou Z, Zheng Z Adv Sci (Weinh). 2025; 12(9):e2409087.

PMID: 39887942 PMC: 11884622. DOI: 10.1002/advs.202409087.