» Articles » PMID: 26483558

Molecular Control of Irreversible Bistability During Trypanosome Developmental Commitment

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2015 Oct 21
PMID 26483558
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The life cycle of Trypanosoma brucei involves developmental transitions that allow survival, proliferation, and transmission of these parasites. One of these, the differentiation of growth-arrested stumpy forms in the mammalian blood into insect-stage procyclic forms, can be induced synchronously in vitro with cis-aconitate. Here, we show that this transition is an irreversible bistable switch, and we map the point of commitment to differentiation after exposure to cis-aconitate. This irreversibility implies that positive feedback mechanisms operate to allow commitment (i.e., the establishment of "memory" of exposure to the differentiation signal). Using the reversible translational inhibitor cycloheximide, we show that this signal memory requires new protein synthesis. We further performed stable isotope labeling by amino acids in cell culture to analyze synchronized parasite populations, establishing the protein and phosphorylation profile of parasites pre- and postcommitment, thereby defining the "commitment proteome." Functional interrogation of this data set identified Nek-related kinase as the first-discovered protein kinase controlling the initiation of differentiation to procyclic forms.

Citing Articles

Genomic Occupancy of the Bromodomain Protein Bdf3 Is Dynamic during Differentiation of African Trypanosomes from Bloodstream to Procyclic Forms.

Ashby E, Paddock L, Betts H, Liao J, Miller G, Porter A mSphere. 2022; 7(3):e0002322.

PMID: 35642518 PMC: 9241505. DOI: 10.1128/msphere.00023-22.


The genomic basis of host and vector specificity in non-pathogenic trypanosomatids.

Oldrieve G, Malacart B, Lopez-Vidal J, Matthews K Biol Open. 2022; 11(4).

PMID: 35373253 PMC: 9099014. DOI: 10.1242/bio.059237.


N-methyladenosine in poly(A) tails stabilize VSG transcripts.

Viegas I, de Macedo J, Serra L, De Niz M, Temporao A, Silva Pereira S Nature. 2022; 604(7905):362-370.

PMID: 35355019 PMC: 9150445. DOI: 10.1038/s41586-022-04544-0.


Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro.

Rojas F, Cayla M, Matthews K PLoS Negl Trop Dis. 2021; 15(4):e0009284.

PMID: 33909626 PMC: 8109799. DOI: 10.1371/journal.pntd.0009284.


Insights into the functions and RNA binding of ZC3H22, RBP9 and DRBD7.

Erben E, Leiss K, Liu B, Gil D, Helbig C, Clayton C Parasitology. 2021; 148(10):1186-1195.

PMID: 33536101 PMC: 8312216. DOI: 10.1017/S0031182021000123.


References
1.
Szoor B, Ruberto I, Burchmore R, Matthews K . A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. Genes Dev. 2010; 24(12):1306-16. PMC: 2885665. DOI: 10.1101/gad.570310. View

2.
Thingholm T, Jorgensen T, Jensen O, Larsen M . Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc. 2007; 1(4):1929-35. DOI: 10.1038/nprot.2006.185. View

3.
Sbicego S, Vassella E, Kurath U, Blum B, Roditi I . The use of transgenic Trypanosoma brucei to identify compounds inducing the differentiation of bloodstream forms to procyclic forms. Mol Biochem Parasitol. 1999; 104(2):311-22. DOI: 10.1016/s0166-6851(99)00157-7. View

4.
Fragoso C, Schumann Burkard G, Oberle M, Kunz Renggli C, Hilzinger K, Roditi I . PSSA-2, a membrane-spanning phosphoprotein of Trypanosoma brucei, is required for efficient maturation of infection. PLoS One. 2009; 4(9):e7074. PMC: 2739429. DOI: 10.1371/journal.pone.0007074. View

5.
Szoor B, Wilson J, McElhinney H, Tabernero L, Matthews K . Protein tyrosine phosphatase TbPTP1: A molecular switch controlling life cycle differentiation in trypanosomes. J Cell Biol. 2006; 175(2):293-303. PMC: 2064570. DOI: 10.1083/jcb.200605090. View