» Articles » PMID: 26446303

A Unified Framework for Reservoir Computing and Extreme Learning Machines Based on a Single Time-delayed Neuron

Overview
Journal Sci Rep
Specialty Science
Date 2015 Oct 9
PMID 26446303
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper we present a unified framework for extreme learning machines and reservoir computing (echo state networks), which can be physically implemented using a single nonlinear neuron subject to delayed feedback. The reservoir is built within the delay-line, employing a number of "virtual" neurons. These virtual neurons receive random projections from the input layer containing the information to be processed. One key advantage of this approach is that it can be implemented efficiently in hardware. We show that the reservoir computing implementation, in this case optoelectronic, is also capable to realize extreme learning machines, demonstrating the unified framework for both schemes in software as well as in hardware.

Citing Articles

Efficient optimisation of physical reservoir computers using only a delayed input.

Picco E, Jaurigue L, Ludge K, Massar S Commun Eng. 2025; 4(1):3.

PMID: 39827312 PMC: 11742992. DOI: 10.1038/s44172-025-00340-6.


Photonic neuromorphic technologies in optical communications.

Argyris A Nanophotonics. 2024; 11(5):897-916.

PMID: 39634468 PMC: 11501306. DOI: 10.1515/nanoph-2021-0578.


Parallel and deep reservoir computing using semiconductor lasers with optical feedback.

Hasegawa H, Kanno K, Uchida A Nanophotonics. 2024; 12(5):869-881.

PMID: 39634361 PMC: 11501584. DOI: 10.1515/nanoph-2022-0440.


Complex dynamics in nonlinear small time-delayed optoelectronic oscillator and application in fast reservoir computing and pulse generation.

Tang D, Liang E, Lu Q, Zhao H, Li Z Sci Rep. 2024; 14(1):18672.

PMID: 39134624 PMC: 11319353. DOI: 10.1038/s41598-024-69585-z.


Pattern recognition in reciprocal space with a magnon-scattering reservoir.

Korber L, Heins C, Hula T, Kim J, Thlang S, Schultheiss H Nat Commun. 2023; 14(1):3954.

PMID: 37402733 PMC: 10319722. DOI: 10.1038/s41467-023-39452-y.


References
1.
Brunner D, Soriano M, Mirasso C, Fischer I . Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun. 2013; 4:1364. PMC: 3562454. DOI: 10.1038/ncomms2368. View

2.
Soriano M, Ortin S, Brunner D, Larger L, Mirasso C, Fischer I . Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt Express. 2013; 21(1):12-20. DOI: 10.1364/OE.21.000012. View

3.
Zhang B, Miller D, Wang Y . Nonlinear system modeling with random matrices: echo state networks revisited. IEEE Trans Neural Netw Learn Syst. 2014; 23(1):175-82. PMC: 4107715. DOI: 10.1109/TNNLS.2011.2178562. View

4.
Huang G, Huang G, Song S, You K . Trends in extreme learning machines: a review. Neural Netw. 2014; 61:32-48. DOI: 10.1016/j.neunet.2014.10.001. View

5.
Appeltant L, Soriano M, Van der Sande G, Danckaert J, Massar S, Dambre J . Information processing using a single dynamical node as complex system. Nat Commun. 2011; 2:468. PMC: 3195233. DOI: 10.1038/ncomms1476. View