» Articles » PMID: 23388891

Optoelectronic Reservoir Computing: Tackling Noise-induced Performance Degradation

Overview
Journal Opt Express
Date 2013 Feb 8
PMID 23388891
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

We present improved strategies to perform photonic information processing using an optoelectronic oscillator with delayed feedback. In particular, we study, via numerical simulations and experiments, the influence of a finite signal-to-noise ratio on the computing performance. We illustrate that the performance degradation induced by noise can be compensated for via multi-level pre-processing masks.

Citing Articles

Photonic neuromorphic technologies in optical communications.

Argyris A Nanophotonics. 2024; 11(5):897-916.

PMID: 39634468 PMC: 11501306. DOI: 10.1515/nanoph-2021-0578.


Transfer learning for photonic delay-based reservoir computing to compensate parameter drift.

Bauwens I, Harkhoe K, Bienstman P, Verschaffelt G, Van der Sande G Nanophotonics. 2024; 12(5):949-961.

PMID: 39634352 PMC: 11501920. DOI: 10.1515/nanoph-2022-0399.


Harnessing synthetic active particles for physical reservoir computing.

Wang X, Cichos F Nat Commun. 2024; 15(1):774.

PMID: 38287028 PMC: 10825170. DOI: 10.1038/s41467-024-44856-5.


Experimental results on nonlinear distortion compensation using photonic reservoir computing with a single set of weights for different wavelengths.

Gooskens E, Sackesyn S, Dambre J, Bienstman P Sci Rep. 2023; 13(1):21399.

PMID: 38049625 PMC: 10696004. DOI: 10.1038/s41598-023-48816-9.


Leveraging plant physiological dynamics using physical reservoir computing.

Pieters O, De Swaef T, Stock M, Wyffels F Sci Rep. 2022; 12(1):12594.

PMID: 35869238 PMC: 9307625. DOI: 10.1038/s41598-022-16874-0.