» Articles » PMID: 26443185

Exfoliation of Large-area Transition Metal Chalcogenide Single Layers

Overview
Journal Sci Rep
Specialty Science
Date 2015 Oct 8
PMID 26443185
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically < 10 μm) lateral size of the produced single layers. Here, we report a novel mechanical exfoliation technique, based on chemically enhanced adhesion, yielding MoS2 single layers with typical lateral sizes of several hundreds of microns. The idea is to exploit the chemical affinity of the sulfur atoms that can bind more strongly to a gold surface than the neighboring layers of the bulk MoS2 crystal. Moreover, we found that our exfoliation process is not specific to MoS2, but can be generally applied for various layered chalcogenides including selenites and tellurides, providing an easy access to large-area 2D crystals for the whole class of layered transition metal chalcogenides.

Citing Articles

Controlling Gold-Assisted Exfoliation of Large-Area MoS Monolayers with External Pressure.

Chen S, Li B, Dai C, Zhu L, Shen Y, Liu F Nanomaterials (Basel). 2024; 14(17).

PMID: 39269080 PMC: 11397389. DOI: 10.3390/nano14171418.


Radiationless optical modes in metasurfaces: recent progress and applications.

Muhammad N, Su Z, Jiang Q, Wang Y, Huang L Light Sci Appl. 2024; 13(1):192.

PMID: 39152114 PMC: 11329644. DOI: 10.1038/s41377-024-01548-5.


Improved Strain Transfer Efficiency in Large-Area Two-Dimensional MoS Obtained by Gold-Assisted Exfoliation.

Rodriguez A, Cakiroglu O, Li H, Carrascoso F, Mompean F, Garcia-Hernandez M J Phys Chem Lett. 2024; 15(24):6355-6362.

PMID: 38857301 PMC: 11194808. DOI: 10.1021/acs.jpclett.4c00855.


Predicting quantum emitter fluctuations with time-series forecasting models.

Ramezani F, Strasbourg M, Parvez S, Saxena R, Jariwala D, Borys N Sci Rep. 2024; 14(1):6920.

PMID: 38519600 PMC: 10959974. DOI: 10.1038/s41598-024-56517-0.


Progress and Prospects in Metallic FeGeTe (3 ≤ ≤ 7) Ferromagnets.

Ren H, Lan M Molecules. 2023; 28(21).

PMID: 37959664 PMC: 10649090. DOI: 10.3390/molecules28217244.


References
1.
Koenig S, Boddeti N, Dunn M, Scott Bunch J . Ultrastrong adhesion of graphene membranes. Nat Nanotechnol. 2011; 6(9):543-6. DOI: 10.1038/nnano.2011.123. View

2.
Butler S, Hollen S, Cao L, Cui Y, Gupta J, Gutierrez H . Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 2013; 7(4):2898-926. DOI: 10.1021/nn400280c. View

3.
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A . Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol. 2013; 8(7):497-501. DOI: 10.1038/nnano.2013.100. View

4.
Hakkinen H . The gold-sulfur interface at the nanoscale. Nat Chem. 2012; 4(6):443-55. DOI: 10.1038/nchem.1352. View

5.
Kobayashi , Yamauchi . Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Phys Rev B Condens Matter. 1995; 51(23):17085-17095. DOI: 10.1103/physrevb.51.17085. View