» Articles » PMID: 26439689

Vascular Heterogeneity and Targeting: the Role of YKL-40 in Glioblastoma Vascularization

Overview
Journal Oncotarget
Specialty Oncology
Date 2015 Oct 7
PMID 26439689
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Malignant glioblastomas (GBM) are highly malignant brain tumors that have extensive and aberrant tumor vasculature, including multiple types of vessels. This review focuses on recent discoveries that the angiogenic factor YKL-40 (CHI3L1) acts on glioblastoma-stem like cells (GSCs) to drive the formation of two major forms of tumor vascularization: angiogenesis and vasculogenic mimicry (VM). GSCs possess multipotent cells able to transdifferentiate into vascular pericytes or smooth muscle cells (PC/SMCs) that either coordinate with endothelial cells (ECs) to facilitate angiogenesis or assemble in the absence of ECs to form blood-perfused channels via VM. GBMs express high levels of YKL-40 that drives the divergent signaling cascades to mediate the formation of these distinct microvascular circulations. Although a variety of anti-tumor agents that target angiogenesis have demonstrated transient benefits for patients, they often fail to restrict tumor growth, which underscores the need for additional therapeutic tools. We propose that targeting YKL-40 may compliment conventional anti-angiogenic therapies to provide a substantial clinical benefit to patients with GBM and several other types of solid tumors.

Citing Articles

Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review.

Qiu C, Sun N, Zeng S, Chen L, Gong F, Tian J Discov Oncol. 2024; 15(1):501.

PMID: 39331302 PMC: 11436538. DOI: 10.1007/s12672-024-01380-8.


Predictive value of serum HIF-1α/HIF-2α and YKL-40 levels for vascular invasion and prognosis of follicular thyroid cancer.

Li J, Yu K, Chen D, Luo G, Jia J Clinics (Sao Paulo). 2024; 79:100486.

PMID: 39277981 PMC: 11419804. DOI: 10.1016/j.clinsp.2024.100486.


Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma.

Abdel-Rahman S, Gabr M Cancers (Basel). 2024; 16(2).

PMID: 38275876 PMC: 10814352. DOI: 10.3390/cancers16020435.


Tumor Targeting siRNA-COG3 to Suppress Tumor Progression in Mice and Inhibit Cancer Metastasis and Angiogenesis in Ovarian Cancer Cell Lines.

Ijabi J, Ijabi R, Roozehdar P, Kaminsky Z, Moradi-Sardareh H, Tehranian N Microrna. 2024; 13(2):140-154.

PMID: 38243930 DOI: 10.2174/0122115366275856240101083442.


Gal-1 Expression Analysis in the GLIOCAT Multicenter Study: Role as a Prognostic Factor and an Immune-Suppressive Biomarker.

Martinez-Bosch N, Vilarino N, Alameda F, Mojal S, Arumi-Uria M, Carrato C Cells. 2023; 12(6).

PMID: 36980184 PMC: 10047329. DOI: 10.3390/cells12060843.


References
1.
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W . Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004; 350(23):2335-42. DOI: 10.1056/NEJMoa032691. View

2.
Casanovas O, Hicklin D, Bergers G, Hanahan D . Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005; 8(4):299-309. DOI: 10.1016/j.ccr.2005.09.005. View

3.
Saidi A, Javerzat S, Bellahcene A, De Vos J, Bello L, Castronovo V . Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma. Int J Cancer. 2007; 122(10):2187-98. DOI: 10.1002/ijc.23313. View

4.
Hellberg C, Ostman A, Heldin C . PDGF and vessel maturation. Recent Results Cancer Res. 2009; 180:103-14. DOI: 10.1007/978-3-540-78281-0_7. View

5.
Shao R, Francescone R, Ngernyuang N, Bentley B, Taylor S, Moral L . Anti-YKL-40 antibody and ionizing irradiation synergistically inhibit tumor vascularization and malignancy in glioblastoma. Carcinogenesis. 2013; 35(2):373-82. PMC: 3908752. DOI: 10.1093/carcin/bgt380. View