» Articles » PMID: 33779510

Perspective: Targeting VEGF-A and YKL-40 in Glioblastoma - Matter Matters

Abstract

Glioblastomas (GBM) are heterogeneous highly vascular brain tumors exploiting the unique microenvironment in the brain to resist treatment and anti-tumor responses. Anti-angiogenic agents, immunotherapy, and targeted therapy have been studied extensively in GBM patients over a number of decades with minimal success. Despite maximal efforts, prognosis remains dismal with an overall survival of approximately 15 months.Bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF) antibody, underwent accelerated approval by the U.S. Food and Drug Administration in 2009 for the treatment of recurrent GBM based on promising preclinical and early clinical studies. Unfortunately, subsequent clinical trials did not find overall survival benefit. Pursuing pleiotropic targets and leaning toward multitarget strategies may be a key to more effective therapeutic intervention in GBM, but preclinical evaluation requires careful consideration of model choices. In this study, we discuss bevacizumab resistance, dual targeting of pro-angiogenic modulators VEGF and YKL-40 in the context of brain tumor microenvironment, and how model choice impacts study conclusions and its translational significance.

Citing Articles

YKL-40 inhibits melanoma progression and metastasis by inducing immune cell infiltration in a mouse model.

Zhang H, Zhao X, Shi M, Han Y, Lu K, Wang H Sci Rep. 2025; 15(1):7426.

PMID: 40033096 PMC: 11876687. DOI: 10.1038/s41598-025-92522-7.


High VEGFA Expression Is Associated with Improved Progression-Free Survival after Bevacizumab Treatment in Recurrent Glioblastoma.

Alves B, Peixoto J, Macedo S, Pinheiro J, Carvalho B, Soares P Cancers (Basel). 2023; 15(8).

PMID: 37190125 PMC: 10136662. DOI: 10.3390/cancers15082196.


Functional analysis of the short splicing variant encoded by CHI3L1/YKL-40 in glioblastoma.

Shi M, Ge Q, Wang X, Diao W, Yang B, Sun S Front Oncol. 2022; 12:910728.

PMID: 36408158 PMC: 9666495. DOI: 10.3389/fonc.2022.910728.


Plasma IL-8 and ICOSLG as prognostic biomarkers in glioblastoma.

Bjornbak Holst C, Christensen I, Vitting-Seerup K, Skjoth-Rasmussen J, Hamerlik P, Poulsen H Neurooncol Adv. 2021; 3(1):vdab072.

PMID: 34286278 PMC: 8284624. DOI: 10.1093/noajnl/vdab072.


New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis.

Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J Cancers (Basel). 2021; 13(13).

PMID: 34209679 PMC: 8268686. DOI: 10.3390/cancers13133253.

References
1.
Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A . Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006; 444(7120):756-60. DOI: 10.1038/nature05236. View

2.
Lu K, Chang J, Parachoniak C, Pandika M, Aghi M, Meyronet D . VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012; 22(1):21-35. PMC: 4068350. DOI: 10.1016/j.ccr.2012.05.037. View

3.
Smyth G, Michaud J, Scott H . Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005; 21(9):2067-75. DOI: 10.1093/bioinformatics/bti270. View

4.
Neftel C, Laffy J, Filbin M, Hara T, Shore M, Rahme G . An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019; 178(4):835-849.e21. PMC: 6703186. DOI: 10.1016/j.cell.2019.06.024. View

5.
Urup T, Staunstrup L, Michaelsen S, Vitting-Seerup K, Bennedbaek M, Toft A . Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients. BMC Cancer. 2017; 17(1):278. PMC: 5395849. DOI: 10.1186/s12885-017-3251-3. View