» Articles » PMID: 26437586

Repair Pathway Choices and Consequences at the Double-Strand Break

Overview
Specialty Cell Biology
Date 2015 Oct 7
PMID 26437586
Citations 772
Authors
Affiliations
Soon will be listed here.
Abstract

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.

Citing Articles

Lipoylation inhibition enhances radiation control of lung cancer by suppressing homologous recombination DNA damage repair.

Chiang J, Shang Z, Rosales T, Cai L, Chen W, Cai F Sci Adv. 2025; 11(11):eadt1241.

PMID: 40073141 PMC: 11900879. DOI: 10.1126/sciadv.adt1241.


Molecular breeding of pigs in the genome editing era.

Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H Genet Sel Evol. 2025; 57(1):12.

PMID: 40065264 PMC: 11892312. DOI: 10.1186/s12711-025-00961-7.


Harnessing transcriptional regulation of alternative end-joining to predict cancer treatment.

Espin R, Medina-Jover F, Siguenza-Andrade J, Farran-Matas S, Mateo F, Figueras A NAR Cancer. 2025; 7(1):zcaf007.

PMID: 40061566 PMC: 11886861. DOI: 10.1093/narcan/zcaf007.


Prospects and challenges of ovarian cancer organoids in chemotherapy research (Review).

Zhang W, Ding Y, He H, Chen K, Zeng Q, Cao X Oncol Lett. 2025; 29(4):198.

PMID: 40052067 PMC: 11883337. DOI: 10.3892/ol.2025.14944.


The Landscape of PARP Inhibitors in Solid Cancers.

Muzzana M, Broggini M, Damia G Onco Targets Ther. 2025; 18:297-317.

PMID: 40051775 PMC: 11884256. DOI: 10.2147/OTT.S499226.


References
1.
Schwendener S, Raynard S, Paliwal S, Cheng A, Kanagaraj R, Shevelev I . Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity. J Biol Chem. 2010; 285(21):15739-45. PMC: 2871440. DOI: 10.1074/jbc.M110.110478. View

2.
Lord C, Tutt A, Ashworth A . Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med. 2014; 66:455-70. DOI: 10.1146/annurev-med-050913-022545. View

3.
Hu Y, Petit S, Ficarro S, Toomire K, Xie A, Lim E . PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov. 2014; 4(12):1430-47. PMC: 4258125. DOI: 10.1158/2159-8290.CD-13-0891. View

4.
Watkins J, Weekes D, Shah V, Gazinska P, Joshi S, Sidhu B . Genomic Complexity Profiling Reveals That HORMAD1 Overexpression Contributes to Homologous Recombination Deficiency in Triple-Negative Breast Cancers. Cancer Discov. 2015; 5(5):488-505. PMC: 4490184. DOI: 10.1158/2159-8290.CD-14-1092. View

5.
Barber L, Youds J, Ward J, McIlwraith M, ONeil N, Petalcorin M . RTEL1 maintains genomic stability by suppressing homologous recombination. Cell. 2008; 135(2):261-71. PMC: 3726190. DOI: 10.1016/j.cell.2008.08.016. View