» Articles » PMID: 26344568

Translational Arrest by a Prokaryotic Signal Recognition Particle is Mediated by RNA Interactions

Overview
Date 2015 Sep 8
PMID 26344568
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The signal recognition particle (SRP) recognizes signal sequences of nascent polypeptides and targets ribosome-nascent chain complexes to membrane translocation sites. In eukaryotes, translating ribosomes are slowed down by the Alu domain of SRP to allow efficient targeting. In prokaryotes, however, little is known about the structure and function of Alu domain-containing SRPs. Here, we report a complete molecular model of SRP from the Gram-positive bacterium Bacillus subtilis, based on cryo-EM. The SRP comprises two subunits, 6S RNA and SRP54 or Ffh, and it facilitates elongation slowdown similarly to its eukaryotic counterpart. However, protein contacts with the small ribosomal subunit observed for the mammalian Alu domain are substituted in bacteria by RNA-RNA interactions of 6S RNA with the α-sarcin-ricin loop and helices H43 and H44 of 23S rRNA. Our findings provide a structural basis for cotranslational targeting and RNA-driven elongation arrest in prokaryotes.

Citing Articles

Cryo-EM structure of SRP68/72 reveals an extended dimerization domain with RNA-binding activity.

Zhong Y, Feng J, Koh A, Kotecha A, Greber B, Ataide S Nucleic Acids Res. 2024; 52(9):5285-5300.

PMID: 38366771 PMC: 11109942. DOI: 10.1093/nar/gkae107.


A linear and circular dual-conformation noncoding RNA involved in oxidative stress tolerance in Bacillus altitudinis.

He T, Xu Y, Li X, Wang X, Li J, Ou-Yang D Nat Commun. 2023; 14(1):5722.

PMID: 37714854 PMC: 10504365. DOI: 10.1038/s41467-023-41491-4.


The dynamic architecture of Map1- and NatB-ribosome complexes coordinates the sequential modifications of nascent polypeptide chains.

Knorr A, Mackens-Kiani T, Musial J, Berninghausen O, Becker T, Beatrix B PLoS Biol. 2023; 21(4):e3001995.

PMID: 37079644 PMC: 10118133. DOI: 10.1371/journal.pbio.3001995.


The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services.

Fromm S, OConnor K, Purdy M, Bhatt P, Loughran G, Atkins J Nat Commun. 2023; 14(1):1095.

PMID: 36841832 PMC: 9968351. DOI: 10.1038/s41467-023-36742-3.


Biophysical characterisation of human LincRNA-p21 sense and antisense Alu inverted repeats.

DSouza M, Mrozowich T, Badmalia M, Geeraert M, Frederickson A, Henrickson A Nucleic Acids Res. 2022; 50(10):5881-5898.

PMID: 35639511 PMC: 9177966. DOI: 10.1093/nar/gkac414.


References
1.
Nishiguchi M, Honda K, Amikura R, Nakamura K, Yamane K . Structural requirements of Bacillus subtilis small cytoplasmic RNA for cell growth, sporulation, and extracellular enzyme production. J Bacteriol. 1994; 176(1):157-65. PMC: 205027. DOI: 10.1128/jb.176.1.157-165.1994. View

2.
Sohmen D, Chiba S, Shimokawa-Chiba N, Innis C, Berninghausen O, Beckmann R . Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat Commun. 2015; 6:6941. PMC: 4423224. DOI: 10.1038/ncomms7941. View

3.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View

4.
Zhu L, Klenner C, Kuhn A, Dalbey R . Both YidC and SecYEG are required for translocation of the periplasmic loops 1 and 2 of the multispanning membrane protein TatC. J Mol Biol. 2012; 424(5):354-67. DOI: 10.1016/j.jmb.2012.09.026. View

5.
Wickles S, Singharoy A, Andreani J, Seemayer S, Bischoff L, Berninghausen O . A structural model of the active ribosome-bound membrane protein insertase YidC. Elife. 2014; 3:e03035. PMC: 4124156. DOI: 10.7554/eLife.03035. View