» Articles » PMID: 37079644

The Dynamic Architecture of Map1- and NatB-ribosome Complexes Coordinates the Sequential Modifications of Nascent Polypeptide Chains

Overview
Journal PLoS Biol
Specialty Biology
Date 2023 Apr 20
PMID 37079644
Authors
Affiliations
Soon will be listed here.
Abstract

Cotranslational modification of the nascent polypeptide chain is one of the first events during the birth of a new protein. In eukaryotes, methionine aminopeptidases (MetAPs) cleave off the starter methionine, whereas N-acetyl-transferases (NATs) catalyze N-terminal acetylation. MetAPs and NATs compete with other cotranslationally acting chaperones, such as ribosome-associated complex (RAC), protein targeting and translocation factors (SRP and Sec61) for binding sites at the ribosomal tunnel exit. Yet, whereas well-resolved structures for ribosome-bound RAC, SRP and Sec61, are available, structural information on the mode of ribosome interaction of eukaryotic MetAPs or of the five cotranslationally active NATs is only available for NatA. Here, we present cryo-EM structures of yeast Map1 and NatB bound to ribosome-nascent chain complexes. Map1 is mainly associated with the dynamic rRNA expansion segment ES27a, thereby kept at an ideal position below the tunnel exit to act on the emerging substrate nascent chain. For NatB, we observe two copies of the NatB complex. NatB-1 binds directly below the tunnel exit, again involving ES27a, and NatB-2 is located below the second universal adapter site (eL31 and uL22). The binding mode of the two NatB complexes on the ribosome differs but overlaps with that of NatA and Map1, implying that NatB binds exclusively to the tunnel exit. We further observe that ES27a adopts distinct conformations when bound to NatA, NatB, or Map1, together suggesting a contribution to the coordination of a sequential activity of these factors on the emerging nascent chain at the ribosomal exit tunnel.

Citing Articles

Ribosome Structural Changes Dynamically Affect Ribosome Function.

Lindahl L Int J Mol Sci. 2024; 25(20).

PMID: 39456968 PMC: 11508205. DOI: 10.3390/ijms252011186.


Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome.

Klein M, Wild K, Sinning I Nat Commun. 2024; 15(1):7681.

PMID: 39227397 PMC: 11372111. DOI: 10.1038/s41467-024-51964-9.


Reduction of Ribosomal Expansion Segments in Yeast Species of the Magnusiomyces/Saprochaete Clade.

Brazdovic F, Brejova B, Sivakova B, Barath P, Kerak F, Hodorova V Genome Biol Evol. 2024; 16(8).

PMID: 39119893 PMC: 11342254. DOI: 10.1093/gbe/evae173.


Structural analysis of the dynamic ribosome-translocon complex.

Lewis A, Zhong F, Keenan R, Hegde R Elife. 2024; 13.

PMID: 38896445 PMC: 11186639. DOI: 10.7554/eLife.95814.


Efficient signal sequence of mRNA vaccines enhances the antigen expression to expand the immune protection against viral infection.

Zhang Y, Zhai S, Huang H, Qin S, Sun M, Chen Y J Nanobiotechnology. 2024; 22(1):295.

PMID: 38807131 PMC: 11134928. DOI: 10.1186/s12951-024-02488-3.


References
1.
Bradshaw R, Brickey W, Walker K . N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem Sci. 1998; 23(7):263-7. DOI: 10.1016/s0968-0004(98)01227-4. View

2.
Varshavsky A . The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A. 1996; 93(22):12142-9. PMC: 37957. DOI: 10.1073/pnas.93.22.12142. View

3.
Miller C, Kukral A, Miller J, Movva N . pepM is an essential gene in Salmonella typhimurium. J Bacteriol. 1989; 171(9):5215-7. PMC: 210346. DOI: 10.1128/jb.171.9.5215-5217.1989. View

4.
Deng S, Pan B, Gottlieb L, Petersson E, Marmorstein R . Molecular basis for N-terminal alpha-synuclein acetylation by human NatB. Elife. 2020; 9. PMC: 7494357. DOI: 10.7554/eLife.57491. View

5.
Emsley P, Cowtan K . Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1):2126-32. DOI: 10.1107/S0907444904019158. View