» Articles » PMID: 26296817

Regulation of Renal Phosphate Handling: Inter-organ Communication in Health and Disease

Overview
Specialty Endocrinology
Date 2015 Aug 23
PMID 26296817
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

In this review, we focus on the interconnection of inorganic phosphate (Pi) homeostasis in the network of the bone-kidney, parathyroid-kidney, intestine-kidney, and liver-kidney axes. Such a network of organ communication is important for body Pi homeostasis. Normalization of serum Pi levels is a clinical target in patients with chronic kidney disease (CKD). Particularly, disorders of the fibroblast growth factor 23/klotho system are observed in early CKD. Identification of phosphaturic factors from the intestine and liver may enhance our understanding of body Pi homeostasis and Pi metabolism disturbances in CKD patients.

Citing Articles

Tenapanor: A novel therapeutic agent for dialysis patients with hyperphosphatemia.

Akizawa T, Urano N, Ikejiri K, Nakanishi K, Fukagawa M Ther Apher Dial. 2025; 29(2):157-169.

PMID: 39829064 PMC: 11879479. DOI: 10.1111/1744-9987.14241.


Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease.

Wang X, Wang Z, He J Diabetes Metab Syndr Obes. 2024; 17:165-192.

PMID: 38222032 PMC: 10788067. DOI: 10.2147/DMSO.S438618.


Urinary Phosphorus Excretion and Cardiovascular Outcomes in Patients with Pre-Dialysis Chronic Kidney Disease: The KNOW-CKD Study.

Suh S, Oh T, Choi H, Kim C, Bae E, Ma S Nutrients. 2023; 15(10).

PMID: 37242150 PMC: 10220543. DOI: 10.3390/nu15102267.


Hypophosphatemia as a prognostic tool for post-hepatectomy liver failure: A systematic review.

Riauka R, Ignatavicius P, Barauskas G World J Gastrointest Surg. 2023; 15(2):249-257.

PMID: 36896296 PMC: 9988637. DOI: 10.4240/wjgs.v15.i2.249.


Dietary vitamin D deprivation suppresses fibroblast growth factor 23 signals by reducing serum phosphorus levels in laying hens.

Yan J, Pan C, Liu Y, Liao X, Chen J, Zhu Y Anim Nutr. 2022; 9:23-30.

PMID: 35949979 PMC: 9344313. DOI: 10.1016/j.aninu.2021.07.010.


References
1.
Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi S . Intestinal phosphate transport. Adv Chronic Kidney Dis. 2011; 18(2):85-90. PMC: 3071860. DOI: 10.1053/j.ackd.2010.11.004. View

2.
Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T . Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol. 2011; 302(9):C1316-30. DOI: 10.1152/ajpcell.00314.2011. View

3.
Imai S . The NAD World: a new systemic regulatory network for metabolism and aging--Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009; 53(2):65-74. PMC: 2734380. DOI: 10.1007/s12013-008-9041-4. View

4.
Myakala K, Motta S, Murer H, Wagner C, Koesters R, Biber J . Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am J Physiol Renal Physiol. 2014; 306(8):F833-43. DOI: 10.1152/ajprenal.00133.2013. View

5.
Brandis M, Harmeyer J, Kaune R, Mohrmann M, Murer H, Zimolo Z . Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine. J Physiol. 1987; 384:479-90. PMC: 1192273. DOI: 10.1113/jphysiol.1987.sp016465. View