» Articles » PMID: 26287182

DNA Targeting Sequence Improves Magnetic Nanoparticle-Based Plasmid DNA Transfection Efficiency in Model Neurons

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2015 Aug 20
PMID 26287182
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Efficient non-viral plasmid DNA transfection of most stem cells, progenitor cells and primary cell lines currently presents an obstacle for many applications within gene therapy research. From a standpoint of efficiency and cell viability, magnetic nanoparticle-based DNA transfection is a promising gene vectoring technique because it has demonstrated rapid and improved transfection outcomes when compared to alternative non-viral methods. Recently, our research group introduced oscillating magnet arrays that resulted in further improvements to this novel plasmid DNA (pDNA) vectoring technology. Continued improvements to nanomagnetic transfection techniques have focused primarily on magnetic nanoparticle (MNP) functionalization and transfection parameter optimization: cell confluence, growth media, serum starvation, magnet oscillation parameters, etc. Noting that none of these parameters can assist in the nuclear translocation of delivered pDNA following MNP-pDNA complex dissociation in the cell's cytoplasm, inclusion of a cassette feature for pDNA nuclear translocation is theoretically justified. In this study incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid improved transfection efficiency in model neurons, presumably from increased nuclear translocation. This observation became most apparent when comparing the response of the dividing SH-SY5Y precursor cell to the non-dividing and differentiated SH-SY5Y neuroblastoma cells.

Citing Articles

Effects of insulin-like growth factor binding protein 3 on cell growth and tumorigenesis in oral squamous cell carcinoma.

Xu H, Zhu D, Zhong L, Zhang Z, Yang C, Yang X Transl Cancer Res. 2022; 8(5):1709-1717.

PMID: 35116920 PMC: 8798126. DOI: 10.21037/tcr.2019.08.13.


Magnetic transfection with superparamagnetic chitosan-loaded IGFBP nanoparticles and their biosafety.

Tang Y, Wu J, Zhang Y, Ju L, Qu X, Jiang D R Soc Open Sci. 2021; 8(1):201331.

PMID: 33614075 PMC: 7890493. DOI: 10.1098/rsos.201331.


Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape.

Rueda-Gensini L, Cifuentes J, Castellanos M, Puentes P, Serna J, Munoz-Camargo C Nanomaterials (Basel). 2020; 10(9).

PMID: 32932957 PMC: 7559083. DOI: 10.3390/nano10091816.


Biomaterial substrate modifications that influence cell-material interactions to prime cellular responses to nonviral gene delivery.

Mantz A, Pannier A Exp Biol Med (Maywood). 2019; 244(2):100-113.

PMID: 30621454 PMC: 6405826. DOI: 10.1177/1535370218821060.


Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude.

Brenner J, Pan D, Myerson J, Marcos-Contreras O, Villa C, Patel P Nat Commun. 2018; 9(1):2684.

PMID: 29992966 PMC: 6041332. DOI: 10.1038/s41467-018-05079-7.


References
1.
Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E . Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 2000; 7(5):401-7. DOI: 10.1038/sj.gt.3301102. View

2.
Cho E, Xie J, Wurm P, Xia Y . Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009; 9(3):1080-4. DOI: 10.1021/nl803487r. View

3.
Miller A, Munkonge F, Alton E, Dean D . Identification of protein cofactors necessary for sequence-specific plasmid DNA nuclear import. Mol Ther. 2009; 17(11):1897-903. PMC: 2835029. DOI: 10.1038/mt.2009.127. View

4.
Martin-Montanez E, Lopez-Tellez J, Acevedo M, Pavia J, Khan Z . Efficiency of gene transfection reagents in NG108-15, SH-SY5Y and CHO-K1 cell lines. Methods Find Exp Clin Pharmacol. 2010; 32(5):291-7. DOI: 10.1358/mf.2010.32.5.1498327. View

5.
Mellott A, Forrest M, Detamore M . Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng. 2012; 41(3):446-68. PMC: 5102682. DOI: 10.1007/s10439-012-0678-1. View