» Articles » PMID: 26275527

Enhanced Production of (R,R)-2,3-butanediol by Metabolically Engineered Klebsiella Oxytoca

Overview
Specialty Biotechnology
Date 2015 Aug 16
PMID 26275527
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Microbial fermentation produces a racemic mixture of 2,3-butanediol ((R,R)-BD, (S,S)-BD, and meso-BD), and the compositions and physiochemical properties vary from microorganism to microorganism. Although the meso form is much more difficult to transport and store because of its higher freezing point than those of the optically active forms, most microorganisms capable of producing 2,3-BD mainly yield meso-2,3-BD. Thus, we developed a metabolically engineered (R,R)-2,3-BD overproducing strain using a Klebsiella oxytoca ΔldhA ΔpflB strain, which shows an outstanding 2,3-BD production performance with more than 90 % of the meso form. A budC gene encoding 2,3-BD dehydrogenase in the K. oxytoca ΔldhA ΔpflB strain was replaced with an exogenous gene encoding (R,R)-2,3-BD dehydrogenase from Paenibacillus polymyxa (K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strain), and then its expression level was further amplified with using a pBBR1MCS plasmid. The fed-batch fermentation of the K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH (pBBR-PBDH) strain with intermittent glucose feeding allowed the production of 106.7 g/L of (R,R)-2,3-BD [meso-2,3-BD, 9.3 g/L], with a yield of 0.40 g/g and a productivity of 3.1 g/L/h, which should be useful for the industrial application of 2,3-BD.

Citing Articles

High production of enantiopure (R,R)-2,3-butanediol from crude glycerol by Klebsiella pneumoniae with an engineered oxidative pathway and a two-stage agitation strategy.

Jo M, Ju J, Heo S, Son C, Jeong K, Oh B Microb Cell Fact. 2024; 23(1):205.

PMID: 39044245 PMC: 11267846. DOI: 10.1186/s12934-024-02480-4.


Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase.

Li Y, Zhao X, Yao M, Yang W, Han Y, Liu L Microb Cell Fact. 2023; 22(1):165.

PMID: 37644496 PMC: 10466699. DOI: 10.1186/s12934-023-02163-6.


Production of highly pure R,R-2,3-butanediol for biological plant growth promoting agent using carbon feeding control of Paenibacillus polymyxa MDBDO.

Ju J, Jo M, Heo S, Kim M, Kim C, Paul N Microb Cell Fact. 2023; 22(1):121.

PMID: 37407951 PMC: 10320955. DOI: 10.1186/s12934-023-02133-y.


Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol.

Kou M, Cui Z, Fu J, Dai W, Wang Z, Chen T Microb Cell Fact. 2022; 21(1):150.

PMID: 35879766 PMC: 9310479. DOI: 10.1186/s12934-022-01875-5.


Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production.

Lee J, Lee Y, Jin Y, Rao C Appl Microbiol Biotechnol. 2021; 105(14-15):5751-5767.

PMID: 34287658 DOI: 10.1007/s00253-021-11436-2.


References
1.
Ji X, Nie Z, Huang H, Ren L, Peng C, Ouyang P . Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol. 2010; 89(4):1119-25. DOI: 10.1007/s00253-010-2940-5. View

2.
Hassler T, Schieder D, Pfaller R, Faulstich M, Sieber V . Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol. 2012; 124:237-44. DOI: 10.1016/j.biortech.2012.08.047. View

3.
Celinska E, Grajek W . Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol Adv. 2009; 27(6):715-725. DOI: 10.1016/j.biotechadv.2009.05.002. View

4.
Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J . Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol. 2009; 101(6):1961-7. DOI: 10.1016/j.biortech.2009.10.052. View

5.
Ui S, Hosaka T, Mizutani K, Ohtsuki T, Mimura A . Acetylacetoin synthase as a marker enzyme for detecting the 2,3-butanediol cycle. J Biosci Bioeng. 2005; 93(2):248-51. DOI: 10.1263/jbb.93.248. View