» Articles » PMID: 26259654

Linking Molecular Models with Ion Mobility Experiments. Illustration with a Rigid Nucleic Acid Structure

Overview
Journal J Mass Spectrom
Publisher Wiley
Date 2015 Aug 12
PMID 26259654
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section Ω(EXP). Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting Ω(CALC) are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with Ω(EXP) determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial.

Citing Articles

Interfacial cfDNA Enrichment and Amplification with On-Chip Thermoplasmonics for Highly Sensitive Cancerous Liquid Biopsy.

Wang D, Liu L, Chi W, Liu Z, Wu J, Liang Y Adv Sci (Weinh). 2024; 12(4):e2409708.

PMID: 39630008 PMC: 11789577. DOI: 10.1002/advs.202409708.


Mass Spectrometry-Based Techniques to Elucidate the Sugar Code.

Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K Chem Rev. 2021; 122(8):7840-7908.

PMID: 34491038 PMC: 9052437. DOI: 10.1021/acs.chemrev.1c00380.


Reaction Monitoring and Structural Characterisation of Coordination Driven Self-Assembled Systems by Ion Mobility-Mass Spectrometry.

Lloyd Williams O, Rijs N Front Chem. 2021; 9:682743.

PMID: 34169059 PMC: 8217442. DOI: 10.3389/fchem.2021.682743.


Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010-2020).

Santos I, Brodbelt J J Sep Sci. 2020; 44(1):340-372.

PMID: 32974962 PMC: 8378248. DOI: 10.1002/jssc.202000833.


Comparative Structural Analysis of 20S Proteasome Ortholog Protein Complexes by Native Mass Spectrometry.

Vimer S, Ben-Nissan G, Morgenstern D, Kumar-Deshmukh F, Polkinghorn C, Quintyn R ACS Cent Sci. 2020; 6(4):573-588.

PMID: 32342007 PMC: 7181328. DOI: 10.1021/acscentsci.0c00080.


References
1.
Balthasart F, Plavec J, Gabelica V . Ammonium ion binding to DNA G-quadruplexes: do electrospray mass spectra faithfully reflect the solution-phase species?. J Am Soc Mass Spectrom. 2012; 24(1):1-8. PMC: 5110665. DOI: 10.1007/s13361-012-0499-3. View

2.
Harvey S, Porrini M, Konijnenberg A, Clarke D, Tyler R, Langridge-Smith P . Dissecting the dynamic conformations of the metamorphic protein lymphotactin. J Phys Chem B. 2014; 118(43):12348-59. DOI: 10.1021/jp504997k. View

3.
Kirkpatrick S, Gelatt Jr C, Vecchi M . Optimization by simulated annealing. Science. 1983; 220(4598):671-80. DOI: 10.1126/science.220.4598.671. View

4.
Sharon M, Robinson C . The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu Rev Biochem. 2007; 76:167-93. DOI: 10.1146/annurev.biochem.76.061005.090816. View

5.
Baumketner A, Bernstein S, Wyttenbach T, Bitan G, Teplow D, Bowers M . Amyloid beta-protein monomer structure: a computational and experimental study. Protein Sci. 2006; 15(3):420-8. PMC: 2249763. DOI: 10.1110/ps.051762406. View