» Articles » PMID: 26219591

An MTCH2 Pathway Repressing Mitochondria Metabolism Regulates Haematopoietic Stem Cell Fate

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Jul 30
PMID 26219591
Citations 119
Authors
Affiliations
Soon will be listed here.
Abstract

The metabolic state of stem cells is emerging as an important determinant of their fate. In the bone marrow, haematopoietic stem cell (HSC) entry into cycle, triggered by an increase in intracellular reactive oxygen species (ROS), corresponds to a critical metabolic switch from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). Here we show that loss of mitochondrial carrier homologue 2 (MTCH2) increases mitochondrial OXPHOS, triggering HSC and progenitor entry into cycle. Elevated OXPHOS is accompanied by an increase in mitochondrial size, increase in ATP and ROS levels, and protection from irradiation-induced apoptosis. In contrast, a phosphorylation-deficient mutant of BID, MTCH2's ligand, induces a similar increase in OXPHOS, but with higher ROS and reduced ATP levels, and is associated with hypersensitivity to irradiation. Thus, our results demonstrate that MTCH2 is a negative regulator of mitochondrial OXPHOS downstream of BID, indispensible in maintaining HSC homeostasis.

Citing Articles

Mitochondrial carrier homolog 2 is important for mitochondrial functionality and non-small cell lung cancer cell growth.

Zhao Y, Wu S, Cao G, Song P, Lan C, Zhang L Cell Death Dis. 2025; 16(1):95.

PMID: 39948081 PMC: 11825924. DOI: 10.1038/s41419-025-07419-0.


Imaging flow cytometry with a real-time throughput beyond 1,000,000 events per second.

Zhou J, Mei L, Yu M, Ma X, Hou D, Yin Z Light Sci Appl. 2025; 14(1):76.

PMID: 39924500 PMC: 11808109. DOI: 10.1038/s41377-025-01754-9.


MTCH2 controls energy demand and expenditure to fuel anabolism during adipogenesis.

Chourasia S, Petucci C, Shoffler C, Abbasian D, Wang H, Han X EMBO J. 2025; 44(4):1007-1038.

PMID: 39753955 PMC: 11832942. DOI: 10.1038/s44318-024-00335-7.


CXCR4 signaling determines the fate of hematopoietic multipotent progenitors by stimulating mTOR activity and mitochondrial metabolism.

Rondeau V, Kalogeraki M, Roland L, Nader Z, Gourhand V, Bonaud A Sci Signal. 2024; 17(860):eadl5100.

PMID: 39471249 PMC: 11733996. DOI: 10.1126/scisignal.adl5100.


MTCH2 promotes the malignant progression of ovarian cancer through the upregulation of AIMP2 expression levels, mitochondrial dysfunction and by mediating energy metabolism.

Sun G, Song Y, Li C, Sun B, Li C, Sun J Oncol Lett. 2024; 28(4):492.

PMID: 39185493 PMC: 11342418. DOI: 10.3892/ol.2024.14625.


References
1.
Blackstone C, Chang C . Mitochondria unite to survive. Nat Cell Biol. 2011; 13(5):521-2. DOI: 10.1038/ncb0511-521. View

2.
Zaltsman Y, Shachnai L, Yivgi-Ohana N, Schwarz M, Maryanovich M, Houtkooper R . MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat Cell Biol. 2010; 12(6):553-562. PMC: 4070879. DOI: 10.1038/ncb2057. View

3.
Plun-Favreau H, Burchell V, Holmstrom K, Yao Z, Deas E, Cain K . HtrA2 deficiency causes mitochondrial uncoupling through the F₁F₀-ATP synthase and consequent ATP depletion. Cell Death Dis. 2012; 3:e335. PMC: 3388244. DOI: 10.1038/cddis.2012.77. View

4.
Wang Y, Israelsen W, Lee D, Yu V, Jeanson N, Clish C . Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 2014; 158(6):1309-1323. PMC: 4197056. DOI: 10.1016/j.cell.2014.07.048. View

5.
Liesa M, Shirihai O . Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013; 17(4):491-506. PMC: 5967396. DOI: 10.1016/j.cmet.2013.03.002. View