» Articles » PMID: 26216902

A Dynamic Formin-dependent Deep F-actin Network in Axons

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2015 Jul 29
PMID 26216902
Citations 99
Authors
Affiliations
Soon will be listed here.
Abstract

Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal "actin hotspots" along axons-spaced ∼3-4 µm apart-where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons-a phenomenon we call "actin trails." Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal "actin rings" described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin-but not Arp2/3-dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable "actin rings" providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles.

Citing Articles

Arp2/3 complex activity enables nuclear YAP for naïve pluripotency of human embryonic stem cells.

Meyer N, Singh T, Kutys M, Nystul T, Barber D Elife. 2024; 13.

PMID: 39319536 PMC: 11509671. DOI: 10.7554/eLife.89725.


Axonal mitochondria regulate gentle touch response through control of axonal actin dynamics.

Hegde S, Modi S, Deihl E, Glomb O, Yogev S, Hoerndli F bioRxiv. 2024; .

PMID: 39185223 PMC: 11343141. DOI: 10.1101/2024.08.13.607780.


Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling.

Lin K, Gujar M, Lin J, Ding W, Huang J, Gao Y Sci Adv. 2024; 10(30):eadl4694.

PMID: 39047090 PMC: 11268418. DOI: 10.1126/sciadv.adl4694.


Actin polymerization and longitudinal actin fibers in axon initial segment plasticity.

Micinski D, Hotulainen P Front Mol Neurosci. 2024; 17:1376997.

PMID: 38799616 PMC: 11120970. DOI: 10.3389/fnmol.2024.1376997.


Actomyosin-II protects axons from degeneration induced by mild mechanical stress.

Pan X, Hu Y, Lei G, Wei Y, Li J, Luan T J Cell Biol. 2024; 223(8).

PMID: 38713825 PMC: 11076810. DOI: 10.1083/jcb.202206046.


References
1.
Christensen R, Shao Z, Colon-Ramos D . The cell biology of synaptic specificity during development. Curr Opin Neurobiol. 2013; 23(6):1018-26. PMC: 3886710. DOI: 10.1016/j.conb.2013.07.004. View

2.
Wang L, Das U, Scott D, Tang Y, McLean P, Roy S . α-synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr Biol. 2014; 24(19):2319-26. PMC: 4190006. DOI: 10.1016/j.cub.2014.08.027. View

3.
Morton W, Ayscough K, McLaughlin P . Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol. 2000; 2(6):376-8. DOI: 10.1038/35014075. View

4.
Okabe S, Hirokawa N . Turnover of fluorescently labelled tubulin and actin in the axon. Nature. 1990; 343(6257):479-82. DOI: 10.1038/343479a0. View

5.
Kaech S, Huang C, Banker G . Short-term high-resolution imaging of developing hippocampal neurons in culture. Cold Spring Harb Protoc. 2012; 2012(3):340-3. PMC: 4438678. DOI: 10.1101/pdb.prot068247. View