» Articles » PMID: 26205667

Perinuclear Tethers License Telomeric DSBs for a Broad Kinesin- and NPC-dependent DNA Repair Process

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Jul 25
PMID 26205667
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

DNA double-strand breaks (DSBs) are often targeted to nuclear pore complexes (NPCs) for repair. How targeting is achieved and the DNA repair pathways involved in this process remain unclear. Here, we show that the kinesin-14 motor protein complex (Cik1-Kar3) cooperates with chromatin remodellers to mediate interactions between subtelomeric DSBs and the Nup84 nuclear pore complex to ensure cell survival via break-induced replication (BIR), an error-prone DNA repair process. Insertion of a DNA zip code near the subtelomeric DSB site artificially targets it to NPCs hyperactivating this repair mechanism. Kinesin-14 and Nup84 mediate BIR-dependent repair at non-telomeric DSBs whereas perinuclear telomere tethers are only required for telomeric BIR. Furthermore, kinesin-14 plays a critical role in telomerase-independent telomere maintenance. Thus, we uncover roles for kinesin and NPCs in DNA repair by BIR and reveal that perinuclear telomere anchors license subtelomeric DSBs for this error-prone DNA repair mechanism.

Citing Articles

METTL3-mediated m6A modification of SLC7A11 enhances nasopharyngeal carcinoma radioresistance by inhibiting ferroptosis.

Dai Z, Lin B, Qin M, Lin Y, Wang L, Liao K Int J Biol Sci. 2025; 21(4):1837-1851.

PMID: 39990661 PMC: 11844296. DOI: 10.7150/ijbs.100518.


Msc1 is a nuclear envelope protein that reinforces DNA repair in late mitosis.

Medina-Suarez S, Ayra-Plasencia J, Perez-Martinez L, Butter F, Machin F iScience. 2024; 27(7):110250.

PMID: 39021806 PMC: 11253511. DOI: 10.1016/j.isci.2024.110250.


DNA double-strand break-capturing nuclear envelope tubules drive DNA repair.

Shokrollahi M, Stanic M, Hundal A, Chan J, Urman D, Jordan C Nat Struct Mol Biol. 2024; 31(9):1319-1330.

PMID: 38632359 DOI: 10.1038/s41594-024-01286-7.


DNA replication and replication stress response in the context of nuclear architecture.

Gonzalez-Acosta D, Lopes M Chromosoma. 2023; 133(1):57-75.

PMID: 38055079 PMC: 10904558. DOI: 10.1007/s00412-023-00813-7.


The Dynamic Behavior of Chromatin in Response to DNA Double-Strand Breaks.

Garcia Fernandez F, Fabre E Genes (Basel). 2022; 13(2).

PMID: 35205260 PMC: 8872016. DOI: 10.3390/genes13020215.


References
1.
Le S, Moore J, Haber J, Greider C . RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics. 1999; 152(1):143-52. PMC: 1460580. DOI: 10.1093/genetics/152.1.143. View

2.
Laporte D, Courtout F, Salin B, Ceschin J, Sagot I . An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence. J Cell Biol. 2013; 203(4):585-94. PMC: 3840927. DOI: 10.1083/jcb.201306075. View

3.
Page B, Satterwhite L, Rose M, Snyder M . Localization of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein. J Cell Biol. 1994; 124(4):507-19. PMC: 2119913. DOI: 10.1083/jcb.124.4.507. View

4.
Cesare A, Reddel R . Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010; 11(5):319-30. DOI: 10.1038/nrg2763. View

5.
Vaze M, Pellicioli A, Lee S, Ira G, Liberi G, Arbel-Eden A . Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell. 2002; 10(2):373-85. DOI: 10.1016/s1097-2765(02)00593-2. View