Phan C, Morinaka B
RSC Chem Biol. 2024; .
PMID: 39464308
PMC: 11499958.
DOI: 10.1039/d4cb00227j.
Dashti Y, Mohammadipanah F, Zhang Y, Cerqueira Diaz P, Vocat A, Zabala D
ACS Infect Dis. 2024; 10(9):3378-3391.
PMID: 39189814
PMC: 11406533.
DOI: 10.1021/acsinfecdis.4c00502.
Lee Y, Yeh Y, Fan P, Zhong A, Ruszczycky M, Liu H
J Am Chem Soc. 2023; 145(6):3656-3664.
PMID: 36719327
PMC: 9940012.
DOI: 10.1021/jacs.2c12953.
Jager C, Croft A
Biochemistry. 2022; 62(2):241-252.
PMID: 36121716
PMC: 9850924.
DOI: 10.1021/acs.biochem.2c00376.
Guo S, Wang S, Ma S, Deng Z, Ding W, Zhang Q
Nat Commun. 2022; 13(1):2361.
PMID: 35487921
PMC: 9055067.
DOI: 10.1038/s41467-022-30084-2.
L-tyrosine-bound ThiH structure reveals C-C bond break differences within radical SAM aromatic amino acid lyases.
Amara P, Saragaglia C, Mouesca J, Martin L, Nicolet Y
Nat Commun. 2022; 13(1):2284.
PMID: 35477710
PMC: 9046217.
DOI: 10.1038/s41467-022-29980-4.
New developments in RiPP discovery, enzymology and engineering.
Montalban-Lopez M, Scott T, Ramesh S, Rahman I, van Heel A, Viel J
Nat Prod Rep. 2020; 38(1):130-239.
PMID: 32935693
PMC: 7864896.
DOI: 10.1039/d0np00027b.
Trapping and Electron Paramagnetic Resonance Characterization of the 5'dAdo Radical in a Radical -Adenosyl Methionine Enzyme Reaction with a Non-Native Substrate.
Sayler R, Stich T, Joshi S, Cooper N, Shaw J, Begley T
ACS Cent Sci. 2019; 5(11):1777-1785.
PMID: 31807679
PMC: 6891858.
DOI: 10.1021/acscentsci.9b00706.
C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products.
Yokoyama K, Lilla E
Nat Prod Rep. 2018; 35(7):660-694.
PMID: 29633774
PMC: 6051890.
DOI: 10.1039/c8np00006a.
Following the electrons: peculiarities in the catalytic cycles of radical SAM enzymes.
Ruszczycky M, Zhong A, Liu H
Nat Prod Rep. 2018; 35(7):615-621.
PMID: 29485151
PMC: 6051909.
DOI: 10.1039/c7np00058h.
Mechanistic Studies on Tryptophan Lyase (NosL): Identification of Cyanide as a Reaction Product.
Bhandari D, Fedoseyenko D, Begley T
J Am Chem Soc. 2017; 140(2):542-545.
PMID: 29232124
PMC: 6078386.
DOI: 10.1021/jacs.7b09000.
Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
Benjdia A, Balty C, Berteau O
Front Chem. 2017; 5:87.
PMID: 29167789
PMC: 5682303.
DOI: 10.3389/fchem.2017.00087.
Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
Mahanta N, Hudson G, Mitchell D
Biochemistry. 2017; 56(40):5229-5244.
PMID: 28895719
PMC: 5634935.
DOI: 10.1021/acs.biochem.7b00771.
Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ.
Ding W, Ji W, Wu Y, Wu R, Liu W, Mo T
Nat Commun. 2017; 8(1):437.
PMID: 28874663
PMC: 5585349.
DOI: 10.1038/s41467-017-00439-1.
Efficient methylation of C2 in l-tryptophan by the cobalamin-dependent radical -adenosylmethionine methylase TsrM requires an unmodified N1 amine.
Blaszczyk A, Wang B, Silakov A, Ho J, Booker S
J Biol Chem. 2017; 292(37):15456-15467.
PMID: 28747433
PMC: 5602403.
DOI: 10.1074/jbc.M117.778548.
7-Carboxy-7-deazaguanine Synthase: A Radical S-Adenosyl-l-methionine Enzyme with Polar Tendencies.
Bruender N, Grell T, Dowling D, McCarty R, Drennan C, Bandarian V
J Am Chem Soc. 2017; 139(5):1912-1920.
PMID: 28045519
PMC: 5301278.
DOI: 10.1021/jacs.6b11381.
Catalytic Promiscuity of the Radical S-adenosyl-L-methionine Enzyme NosL.
Ding W, Ji X, Li Y, Zhang Q
Front Chem. 2016; 4:27.
PMID: 27446906
PMC: 4916742.
DOI: 10.3389/fchem.2016.00027.
New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
Ortega M, van der Donk W
Cell Chem Biol. 2016; 23(1):31-44.
PMID: 26933734
PMC: 4779184.
DOI: 10.1016/j.chembiol.2015.11.012.