» Articles » PMID: 26199233

Genetics of Rapid and Extreme Size Evolution in Island Mice

Overview
Journal Genetics
Specialty Genetics
Date 2015 Jul 23
PMID 26199233
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F(2) intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature.

Citing Articles

Phenotypic and Developmental Dissection of an Instance of the Island Rule.

Nolte M, Payseur B bioRxiv. 2025; .

PMID: 40034646 PMC: 11875247. DOI: 10.1101/2025.01.22.634334.


Early-life gut microbiota assembly patterns are conserved between laboratory and wild mice.

Hanski E, Raulo A, Knowles S Commun Biol. 2024; 7(1):1456.

PMID: 39511304 PMC: 11543677. DOI: 10.1038/s42003-024-07039-y.


Parallel Evolution at the Regulatory Base-Pair Level Contributes to Mammalian Interspecific Differences in Polygenic Traits.

Okamoto A, Capellini T Mol Biol Evol. 2024; 41(8).

PMID: 39073613 PMC: 11321361. DOI: 10.1093/molbev/msae157.


Predicting the direction of phenotypic difference.

Gokhman D, Harris K, Carmi S, Greenbaum G bioRxiv. 2024; .

PMID: 38895291 PMC: 11185551. DOI: 10.1101/2024.02.22.581566.


Leveraging Single-Cell Populations to Uncover the Genetic Basis of Complex Traits.

Minow M, Marand A, Schmitz R Annu Rev Genet. 2023; 57:297-319.

PMID: 37562412 PMC: 10775913. DOI: 10.1146/annurev-genet-022123-110824.


References
1.
Oliver F, Christians J, Liu X, Rhind S, Verma V, Davison C . Regulatory variation at glypican-3 underlies a major growth QTL in mice. PLoS Biol. 2005; 3(5):e135. PMC: 1073695. DOI: 10.1371/journal.pbio.0030135. View

2.
Kenney-Hunt J, Vaughn T, Pletscher L, Peripato A, Routman E, Cothran K . Quantitative trait loci for body size components in mice. Mamm Genome. 2006; 17(6):526-37. DOI: 10.1007/s00335-005-0160-6. View

3.
Cheverud J, Rutledge J, Atchley W . QUANTITATIVE GENETICS OF DEVELOPMENT: GENETIC CORRELATIONS AMONG AGE-SPECIFIC TRAIT VALUES AND THE EVOLUTION OF ONTOGENY. Evolution. 2017; 37(5):895-905. DOI: 10.1111/j.1558-5646.1983.tb05619.x. View

4.
Cheverud J, Leamy L . Quantitative genetics and the evolution of ontogeny. III. Ontogenetic changes in correlation structure among live-body traits in randombred mice. Genet Res. 1985; 46(3):325-35. DOI: 10.1017/s0016672300022813. View

5.
Keane T, Goodstadt L, Danecek P, White M, Wong K, Yalcin B . Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011; 477(7364):289-94. PMC: 3276836. DOI: 10.1038/nature10413. View