» Articles » PMID: 26152888

Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics

Overview
Journal J Proteome Res
Specialty Biochemistry
Date 2015 Jul 9
PMID 26152888
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Interpreting the potentially vast number of hypotheses generated by a shotgun proteomics experiment requires a valid and accurate procedure for assigning statistical confidence estimates to identified tandem mass spectra. Despite the crucial role such procedures play in most high-throughput proteomics experiments, the scientific literature has not reached a consensus about the best confidence estimation methodology. In this work, we evaluate, using theoretical and empirical analysis, four previously proposed protocols for estimating the false discovery rate (FDR) associated with a set of identified tandem mass spectra: two variants of the target-decoy competition protocol (TDC) of Elias and Gygi and two variants of the separate target-decoy search protocol of Käll et al. Our analysis reveals significant biases in the two separate target-decoy search protocols. Moreover, the one TDC protocol that provides an unbiased FDR estimate among the target PSMs does so at the cost of forfeiting a random subset of high-scoring spectrum identifications. We therefore propose the mix-max procedure to provide unbiased, accurate FDR estimates in the presence of well-calibrated scores. The method avoids biases associated with the two separate target-decoy search protocols and also avoids the propensity for target-decoy competition to discard a random subset of high-scoring target identifications.

Citing Articles

Query Mix-Max Method for FDR Estimation Supported by Entrapment Queries.

Madej D, Lam H J Proteome Res. 2025; 24(3):1135-1147.

PMID: 39907052 PMC: 11894652. DOI: 10.1021/acs.jproteome.4c00744.


PyViscount: Validating False Discovery Rate Estimation Methods via Random Search Space Partition.

Madej D, Lam H J Proteome Res. 2025; 24(3):1118-1134.

PMID: 39905949 PMC: 11894659. DOI: 10.1021/acs.jproteome.4c00743.


Ion entropy and accurate entropy-based FDR estimation in metabolomics.

An S, Lu M, Wang R, Wang J, Jiang H, Xie C Brief Bioinform. 2024; 25(2).

PMID: 38426325 PMC: 10939419. DOI: 10.1093/bib/bbae056.


Amino acid sequence assignment from single molecule peptide sequencing data using a two-stage classifier.

Smith M, Simpson Z, Marcotte E PLoS Comput Biol. 2023; 19(5):e1011157.

PMID: 37253025 PMC: 10256185. DOI: 10.1371/journal.pcbi.1011157.


Analyzing rare mutations in metagenomes assembled using long and accurate reads.

Fedarko M, Kolmogorov M, Pevzner P Genome Res. 2022; 32(11-12):2119-2133.

PMID: 36418060 PMC: 9808630. DOI: 10.1101/gr.276917.122.


References
1.
Klammer A, Wu C, MacCoss M, Noble W . Peptide charge state determination for low-resolution tandem mass spectra. Proc IEEE Comput Syst Bioinform Conf. 2006; :175-85. DOI: 10.1109/csb.2005.44. View

2.
Keich U, Noble W . On the importance of well-calibrated scores for identifying shotgun proteomics spectra. J Proteome Res. 2014; 14(2):1147-60. PMC: 4324453. DOI: 10.1021/pr5010983. View

3.
Kall L, Canterbury J, Weston J, Noble W, MacCoss M . Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007; 4(11):923-5. DOI: 10.1038/nmeth1113. View

4.
Kall L, Storey J, MacCoss M, Noble W . Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res. 2007; 7(1):29-34. DOI: 10.1021/pr700600n. View

5.
Rodriguez J, Gupta N, Smith R, Pevzner P . Does trypsin cut before proline?. J Proteome Res. 2007; 7(1):300-5. DOI: 10.1021/pr0705035. View