» Articles » PMID: 18597511

Spectral Probabilities and Generating Functions of Tandem Mass Spectra: a Strike Against Decoy Databases

Overview
Journal J Proteome Res
Specialty Biochemistry
Date 2008 Jul 4
PMID 18597511
Citations 240
Authors
Affiliations
Soon will be listed here.
Abstract

A key problem in computational proteomics is distinguishing between correct and false peptide identifications. We argue that evaluating the error rates of peptide identifications is not unlike computing generating functions in combinatorics. We show that the generating functions and their derivatives ( spectral energy and spectral probability) represent new features of tandem mass spectra that, similarly to Delta-scores, significantly improve peptide identifications. Furthermore, the spectral probability provides a rigorous solution to the problem of computing statistical significance of spectral identifications. The spectral energy/probability approach improves the sensitivity-specificity tradeoff of existing MS/MS search tools, addresses the notoriously difficult problem of "one-hit-wonders" in mass spectrometry, and often eliminates the need for decoy database searches. We therefore argue that the generating function approach has the potential to increase the number of peptide identifications in MS/MS searches.

Citing Articles

Fe starvation induces a second LHCI tetramer to photosystem I in green algae.

Liu H, Khera R, Grob P, Gallaher S, Purvine S, Nicora C bioRxiv. 2024; .

PMID: 39713434 PMC: 11661224. DOI: 10.1101/2024.12.11.624522.


A Review of Protein Inference.

Uszkoreit J, Marcus K, Eisenacher M Methods Mol Biol. 2024; 2859:53-64.

PMID: 39436596 DOI: 10.1007/978-1-0716-4152-1_4.


Coupling Microdroplet-Based Sample Preparation, Multiplexed Isobaric Labeling, and Nanoflow Peptide Fractionation for Deep Proteome Profiling of the Tissue Microenvironment.

Velickovic M, Fillmore T, Attah I, Posso C, Pino J, Zhao R Anal Chem. 2024; 96(32):12973-12982.

PMID: 39089681 PMC: 11325296. DOI: 10.1021/acs.analchem.4c00523.


Automated Immunoprecipitation Workflow for Comprehensive Acetylome Analysis.

Gritsenko M, Tsai C, Kim H, Liu T Methods Mol Biol. 2024; 2823:173-191.

PMID: 39052221 DOI: 10.1007/978-1-0716-3922-1_12.


A Tip-Based Workflow for Sensitive IMAC-Based Low Nanogram Level Phosphoproteomics.

Tsai C, Hsu C, Wang Y, Kim H, Liu T Methods Mol Biol. 2024; 2823:129-140.

PMID: 39052218 DOI: 10.1007/978-1-0716-3922-1_9.


References
1.
Searle B, Dasari S, Turner M, Reddy A, Choi D, Wilmarth P . High-throughput identification of proteins and unanticipated sequence modifications using a mass-based alignment algorithm for MS/MS de novo sequencing results. Anal Chem. 2004; 76(8):2220-30. DOI: 10.1021/ac035258x. View

2.
Elias J, Gygi S . Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007; 4(3):207-14. DOI: 10.1038/nmeth1019. View

3.
Chen T, Kao M, Tepel M, Rush J, Church G . A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J Comput Biol. 2001; 8(3):325-37. DOI: 10.1089/10665270152530872. View

4.
Frank A, Pevzner P . PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem. 2005; 77(4):964-73. DOI: 10.1021/ac048788h. View

5.
Alves G, Yu Y . Robust accurate identification of peptides (RAId): deciphering MS2 data using a structured library search with de novo based statistics. Bioinformatics. 2005; 21(19):3726-32. DOI: 10.1093/bioinformatics/bti620. View