» Articles » PMID: 26082884

Nanotechnology for Cancer Treatment

Overview
Journal Nanotechnol Rev
Publisher De Gruyter
Date 2015 Jun 18
PMID 26082884
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Nanotechnology has the potential to increase the selectivity and potency of chemical, physical, and biological approaches for eliciting cancer cell death while minimizing collateral toxicity to nonmalignant cells. Materials on the nanoscale are increasingly being targeted to cancer cells with great specificity through both active and passive targeting. In this review, we summarize recent literature that has broken new ground in the use of nanotechnology for cancer treatment with an emphasis on targeted drug delivery.

Citing Articles

Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments.

Um-E-Kalsoom , Wang S, Qu J, Liu L Cancer Med. 2024; 13(19):e70155.

PMID: 39387259 PMC: 11465031. DOI: 10.1002/cam4.70155.


Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches.

Beheshtizadeh N, Amiri Z, Tabatabaei S, Seraji A, Gharibshahian M, Nadi A J Transl Med. 2024; 22(1):520.

PMID: 38816723 PMC: 11137998. DOI: 10.1186/s12967-024-05347-9.


Theoretical estimation of the thermal damages of living tissues caused by laser irradiation in tumor thermal therapy.

Abbas I, SaifAlDien M, El-Bary A, Egami R, Elamin M Heliyon. 2024; 10(7):e29016.

PMID: 38617938 PMC: 11015140. DOI: 10.1016/j.heliyon.2024.e29016.


Nanotechnology as a Promising Method in the Treatment of Skin Cancer.

Adamus-Grabicka A, Hikisz P, Sikora J Int J Mol Sci. 2024; 25(4).

PMID: 38396841 PMC: 10889690. DOI: 10.3390/ijms25042165.


A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action.

Golmohammadi M, Zamanian M, Jalal S, Noraldeen S, Ramirez-Coronel A, Oudaha K Food Sci Nutr. 2023; 11(12):7458-7468.

PMID: 38107139 PMC: 10724635. DOI: 10.1002/fsn3.3699.


References
1.
Zern B, Chacko A, Liu J, Greineder C, Blankemeyer E, Radhakrishnan R . Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation. ACS Nano. 2013; 7(3):2461-9. PMC: 3609928. DOI: 10.1021/nn305773f. View

2.
Maruyama K . Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2010; 63(3):161-9. DOI: 10.1016/j.addr.2010.09.003. View

3.
Winter P, Caruthers S, Kassner A, Harris T, Chinen L, Allen J . Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res. 2003; 63(18):5838-43. View

4.
Xie J, Lee S, Chen X . Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010; 62(11):1064-79. PMC: 2988080. DOI: 10.1016/j.addr.2010.07.009. View

5.
Gormley A, Larson N, Sadekar S, Robinson R, Ray A, Ghandehari H . Guided Delivery of Polymer Therapeutics Using Plasmonic Photothermal Therapy. Nano Today. 2012; 7(3):158-167. PMC: 3380374. DOI: 10.1016/j.nantod.2012.04.002. View