» Articles » PMID: 26071768

Ancient Systems of Sodium/Potassium Homeostasis As Predecessors of Membrane Bioenergetics

Overview
Specialty Biochemistry
Date 2015 Jun 15
PMID 26071768
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.

Citing Articles

Temporal control of Staphylococcus aureus intracellular pH by sodium and potassium.

Hilliard J, Gries C FEMS Microbiol Lett. 2024; 371.

PMID: 39567841 PMC: 11636269. DOI: 10.1093/femsle/fnae100.


The inorganic pyrophosphatases of microorganisms: a structural and functional review.

Garcia-Contreras R, de la Mora J, Mora-Montes H, Martinez-Alvarez J, Vicente-Gomez M, Padilla-Vaca F PeerJ. 2024; 12:e17496.

PMID: 38938619 PMC: 11210485. DOI: 10.7717/peerj.17496.


c-di-AMP determines the hierarchical organization of bacterial RCK proteins.

Rocha R, Jorge J, Teixeira-Duarte C, Figueiredo-Costa I, Cereija T, Ferreira-Teixeira P Proc Natl Acad Sci U S A. 2024; 121(18):e2318666121.

PMID: 38652747 PMC: 11067040. DOI: 10.1073/pnas.2318666121.


Chapter 5: Major Biological Innovations in the History of Life on Earth.

Bozdag G, Szeinbaum N, Conlin P, Chen K, Fos S, Garcia A Astrobiology. 2024; 24(S1):S107-S123.

PMID: 38498818 PMC: 11071111. DOI: 10.1089/ast.2021.0119.


Peak Week Carbohydrate Manipulation Practices in Physique Athletes: A Narrative Review.

Homer K, Cross M, Helms E Sports Med Open. 2024; 10(1):8.

PMID: 38218750 PMC: 10787737. DOI: 10.1186/s40798-024-00674-z.


References
1.
Deamer D . Proton permeation of lipid bilayers. J Bioenerg Biomembr. 1987; 19(5):457-79. DOI: 10.1007/BF00770030. View

2.
Voorhees R, Schmeing T, Kelley A, Ramakrishnan V . The mechanism for activation of GTP hydrolysis on the ribosome. Science. 2010; 330(6005):835-838. PMC: 3763471. DOI: 10.1126/science.1194460. View

3.
Soontharapirakkul K, Promden W, Yamada N, Kageyama H, Incharoensakdi A, Iwamoto-Kihara A . Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance. J Biol Chem. 2011; 286(12):10169-76. PMC: 3060469. DOI: 10.1074/jbc.M110.208892. View

4.
Sojo V, Pomiankowski A, Lane N . A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biol. 2014; 12(8):e1001926. PMC: 4130499. DOI: 10.1371/journal.pbio.1001926. View

5.
LARDY H, PRESSMAN B . Effect of surface active agents on the latent ATPase of mitochondria. Biochim Biophys Acta. 1956; 21(3):458-66. DOI: 10.1016/0006-3002(56)90182-2. View