» Articles » PMID: 26052377

Targeted Proteomics for Biomarker Discovery and Validation of Hepatocellular Carcinoma in Hepatitis C Infected Patients

Overview
Journal World J Hepatol
Specialty Gastroenterology
Date 2015 Jun 9
PMID 26052377
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Hepatocellular carcinoma (HCC)-related mortality is high because early detection modalities are hampered by inaccuracy, expense and inherent procedural risks. Thus there is an urgent need for minimally invasive, highly specific and sensitive biomarkers that enable early disease detection when therapeutic intervention remains practical. Successful therapeutic intervention is predicated on the ability to detect the cancer early. Similar unmet medical needs abound in most fields of medicine and require novel methodological approaches. Proteomic profiling of body fluids presents a sensitive diagnostic tool for early cancer detection. Here we describe such a strategy of comparative proteomics to identify potential serum-based biomarkers to distinguish high-risk chronic hepatitis C virus infected patients from HCC patients. In order to compensate for the extraordinary dynamic range in serum proteins, enrichment methods that compress the dynamic range without surrendering proteome complexity can help minimize the problems associated with many depletion methods. The enriched serum can be resolved using 2D-difference in-gel electrophoresis and the spots showing statistically significant changes selected for identification by liquid chromatography-tandem mass spectrometry. Subsequent quantitative verification and validation of these candidate biomarkers represent an obligatory and rate-limiting process that is greatly enabled by selected reaction monitoring (SRM). SRM is a tandem mass spectrometry method suitable for identification and quantitation of target peptides within complex mixtures independent on peptide-specific antibodies. Ultimately, multiplexed SRM and dynamic multiple reaction monitoring can be utilized for the simultaneous analysis of a biomarker panel derived from support vector machine learning approaches, which allows monitoring a specific disease state such as early HCC. Overall, this approach yields high probability biomarkers for clinical validation in large patient cohorts and represents a strategy extensible to many diseases.

Citing Articles

GLYAT suppresses liver cancer and clear cell renal cell carcinoma progression by downregulating ROCK1 expression.

Xia Y, Huang W, Jin G Transl Cancer Res. 2024; 13(9):5097-5111.

PMID: 39430840 PMC: 11483444. DOI: 10.21037/tcr-24-1412.


Low-Abundance Protein Enrichment for Medical Applications: The Involvement of Combinatorial Peptide Library Technique.

Boschetti E, Righetti P Int J Mol Sci. 2023; 24(12).

PMID: 37373476 PMC: 10299117. DOI: 10.3390/ijms241210329.


Advances in Aptamer-Based Biomarker Discovery.

Huang J, Chen X, Fu X, Li Z, Huang Y, Liang C Front Cell Dev Biol. 2021; 9:659760.

PMID: 33796540 PMC: 8007916. DOI: 10.3389/fcell.2021.659760.


Proteomic Profiling and Artificial Intelligence for Hepatocellular Carcinoma Translational Medicine.

Moldogazieva N, Mokhosoev I, Zavadskiy S, Terentiev A Biomedicines. 2021; 9(2).

PMID: 33562077 PMC: 7914649. DOI: 10.3390/biomedicines9020159.


Coding or Noncoding, the Converging Concepts of RNAs.

Li J, Liu C Front Genet. 2019; 10:496.

PMID: 31178900 PMC: 6538810. DOI: 10.3389/fgene.2019.00496.


References
1.
Caldwell S, Park S . The epidemiology of hepatocellular cancer: from the perspectives of public health problem to tumor biology. J Gastroenterol. 2009; 44 Suppl 19:96-101. DOI: 10.1007/s00535-008-2258-6. View

2.
Liotta L, Ferrari M, Petricoin E . Clinical proteomics: written in blood. Nature. 2003; 425(6961):905. DOI: 10.1038/425905a. View

3.
Zhou G, Li H, Decamp D, Chen S, Shu H, Gong Y . 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics. 2002; 1(2):117-24. DOI: 10.1074/mcp.m100015-mcp200. View

4.
Belghiti J, Fuks D . Liver resection and transplantation in hepatocellular carcinoma. Liver Cancer. 2013; 1(2):71-82. PMC: 3747544. DOI: 10.1159/000342403. View

5.
Pepe M, Etzioni R, Feng Z, Potter J, Thompson M, Thornquist M . Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001; 93(14):1054-61. DOI: 10.1093/jnci/93.14.1054. View