» Articles » PMID: 26016674

Metabolic Engineering of a Tyrosine-overproducing Yeast Platform Using Targeted Metabolomics

Overview
Publisher Biomed Central
Date 2015 May 29
PMID 26016674
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Background: L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling.

Results: Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP(+)-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1(-) strain expressing TYRC ARO4(FBR) and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520 μmol/g DCW or 192 mM in the cytosol, but sustained flux through this pathway was found to depend on the complete elimination of feedback inhibition and degradation pathways.

Conclusions: Our targeted metabolomics approach confirmed a likely regulatory site at DAHP synthase and identified another possible cofactor limitation at prephenate dehydrogenase. Additionally, the genome-scale metabolic model identified design strategies that have the potential to improve availability of erythrose 4-phosphate for DAHP synthase and cofactor availability for prephenate dehydrogenase. We evaluated these strategies and provide recommendations for further improvement of aromatic amino acid biosynthesis in S. cerevisiae.

Citing Articles

The interactome of the Bakers' yeast peroxiredoxin Tsa1 implicates it in the redox regulation of intermediary metabolism, glycolysis and zinc homeostasis.

MacDiarmid C, Taggart J, Wang Y, Vashisht A, Qing X, Wohlschlegel J bioRxiv. 2025; .

PMID: 40027620 PMC: 11870615. DOI: 10.1101/2025.02.18.638137.


Semi-rational design and modification of phosphoketolase to improve the yield of tyrosol in .

Song N, Xia H, Xie Y, Guo S, Zhou R, Shangguan L Synth Syst Biotechnol. 2024; 10(1):294-306.

PMID: 39686978 PMC: 11648648. DOI: 10.1016/j.synbio.2024.11.007.


CFSA: Comparative flux sampling analysis as a guide for strain design.

van Rosmalen R, Moreno-Paz S, Duman-Ozdamar Z, Suarez-Diez M Metab Eng Commun. 2024; 19:e00244.

PMID: 39072282 PMC: 11283130. DOI: 10.1016/j.mec.2024.e00244.


Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids.

Yin L, Zhou Y, Ding N, Fang Y Molecules. 2024; 29(12).

PMID: 38930958 PMC: 11206799. DOI: 10.3390/molecules29122893.


The Role of Glucose-6-phosphate Dehydrogenase in the Wine Yeast .

Heinisch J, Murra A, Fernandez Murillo L, Schmitz H Int J Mol Sci. 2024; 25(4).

PMID: 38397078 PMC: 10889316. DOI: 10.3390/ijms25042395.


References
1.
Shao Z, Zhao H, Zhao H . DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2008; 37(2):e16. PMC: 2632897. DOI: 10.1093/nar/gkn991. View

2.
Schellenberger J, Que R, Fleming R, Thiele I, Orth J, Feist A . Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011; 6(9):1290-307. PMC: 3319681. DOI: 10.1038/nprot.2011.308. View

3.
Mannhaupt G, Stucka R, Pilz U, Schwarzlose C, Feldmann H . Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae. Gene. 1989; 85(2):303-11. DOI: 10.1016/0378-1119(89)90422-8. View

4.
Takada Y, Noguchi T . Characteristics of alanine: glyoxylate aminotransferase from Saccharomyces cerevisiae, a regulatory enzyme in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates. Biochem J. 1985; 231(1):157-63. PMC: 1152716. DOI: 10.1042/bj2310157. View

5.
Moran U, Phillips R, Milo R . SnapShot: key numbers in biology. Cell. 2010; 141(7):1262-1262.e1. DOI: 10.1016/j.cell.2010.06.019. View