» Articles » PMID: 26004493

Mechanisms and Therapeutic Potential of MicroRNAs in Hypertension

Overview
Specialty Pharmacology
Date 2015 May 26
PMID 26004493
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Hypertension is the major risk factor for the development of stroke, coronary artery disease, heart failure and renal disease. The underlying cellular and molecular mechanisms of hypertension are complex and remain largely elusive. MicroRNAs (miRNAs) are short, noncoding RNA fragments of 22-26 nucleotides and regulate protein expression post-transcriptionally by targeting the 3'-untranslated region of mRNA. A growing body of recent research indicates that miRNAs are important in the pathogenesis of arterial hypertension. Herein, we summarize the current knowledge regarding the mechanisms of miRNAs in cardiovascular remodeling, focusing specifically on hypertension. We also review recent progress of the miRNA-based therapeutics including pharmacological and nonpharmacological therapies (such as exercise training) and their potential applications in the management of hypertension.

Citing Articles

MicroRNA Expression in Patients with Coronary Artery Disease and Hypertension-A Systematic Review.

Kondracki B, Kloda M, Jusiak-Kloda A, Kondracka A, Wacinski J, Wacinski P Int J Mol Sci. 2024; 25(12).

PMID: 38928136 PMC: 11204345. DOI: 10.3390/ijms25126430.


MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets.

Lv B, He S, Li P, Jiang S, Li D, Lin J FASEB J. 2024; 38(9):e23635.

PMID: 38690685 PMC: 11068116. DOI: 10.1096/fj.202400306R.


MicroRNAs (miRNAs) role in hypertension: pathogenesis and promising therapeutics.

Shaheen N, Shaheen A, Diab R, Desouki M Ann Med Surg (Lond). 2024; 86(1):319-328.

PMID: 38222760 PMC: 10783350. DOI: 10.1097/MS9.0000000000001498.


Acarbose attenuates migration/proliferation via targeting microRNA-143 in vascular smooth muscle cells under diabetic conditions.

Chuang W, Yu M, Yang T, Chan K, Wang C J Food Drug Anal. 2022; 28(3):461-474.

PMID: 35696095 PMC: 9261793. DOI: 10.38212/2224-6614.1241.


Clinical, biochemical, and miRNA profile of subjects with positive screening of primary aldosteronism and nonclassic apparent mineralocorticoid excess.

Tapia-Castillo A, Carvajal C, Perez J, Fardella C Endocrine. 2022; 77(2):380-391.

PMID: 35676467 DOI: 10.1007/s12020-022-03103-x.


References
1.
Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie R . MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2010; 20(2):205-10. PMC: 3128754. DOI: 10.1089/scd.2010.0283. View

2.
Fang Y, Davies P . Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012; 32(4):979-87. PMC: 3306477. DOI: 10.1161/ATVBAHA.111.244053. View

3.
Zhu X, Han T, Sargent I, Yin G, Yao Y . Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol. 2009; 200(6):661.e1-7. DOI: 10.1016/j.ajog.2008.12.045. View

4.
Eulalio A, Huntzinger E, Izaurralde E . Getting to the root of miRNA-mediated gene silencing. Cell. 2008; 132(1):9-14. DOI: 10.1016/j.cell.2007.12.024. View

5.
Guo L, Yang Y, Liu J, Wang L, Li J, Wang Y . Differentially expressed plasma microRNAs and the potential regulatory function of Let-7b in chronic thromboembolic pulmonary hypertension. PLoS One. 2014; 9(6):e101055. PMC: 4076206. DOI: 10.1371/journal.pone.0101055. View