Bayesian Inference of Reaction Kinetics from Single-cell Recordings Across a Heterogeneous Cell Population
Overview
Authors
Affiliations
Single-cell experimental techniques provide informative data to help uncover dynamical processes inside a cell. Making full use of such data requires dedicated computational methods to estimate biophysical process parameters and states in a model-based manner. In particular, the treatment of heterogeneity or cell-to-cell variability deserves special attention. The present article provides an introduction to one particular class of algorithms which employ marginalization in order to take heterogeneity into account. An overview of alternative approaches is provided for comparison. We treat two frequently encountered scenarios in single-cell experiments, namely, single-cell trajectory data and single-cell distribution data.
Multimodal transcriptional control of pattern formation in embryonic development.
Lammers N, Galstyan V, Reimer A, Medin S, Wiggins C, Garcia H Proc Natl Acad Sci U S A. 2019; 117(2):836-847.
PMID: 31882445 PMC: 6969519. DOI: 10.1073/pnas.1912500117.
Comprehensive Review of Models and Methods for Inferences in Bio-Chemical Reaction Networks.
Loskot P, Atitey K, Mihaylova L Front Genet. 2019; 10:549.
PMID: 31258548 PMC: 6588029. DOI: 10.3389/fgene.2019.00549.
Hoffmann M, Galle J NPJ Syst Biol Appl. 2018; 4:15.
PMID: 29675268 PMC: 5895840. DOI: 10.1038/s41540-018-0049-0.
Phillips N, Manning C, Papalopulu N, Rattray M PLoS Comput Biol. 2017; 13(5):e1005479.
PMID: 28493880 PMC: 5444866. DOI: 10.1371/journal.pcbi.1005479.
Koya Y, Kajiyama H, Liu W, Shibata K, Senga T, Kikkawa F J Vis Exp. 2017; (118).
PMID: 28060250 PMC: 5226374. DOI: 10.3791/54353.