» Articles » PMID: 25978707

Advances in Molecular Genetic Systems in Malaria

Overview
Date 2015 May 16
PMID 25978707
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

Robust tools for analysing gene function in Plasmodium parasites, which are the causative agents of malaria, are being developed at an accelerating rate. Two decades after genetic technologies for use in Plasmodium spp. were first described, a range of genetic tools are now available. These include conditional systems that can regulate gene expression at the genome, transcriptional or protein level, as well as more sophisticated tools for gene editing that use piggyBac transposases, integrases, zinc-finger nucleases or the CRISPR-Cas9 system. In this Review, we discuss the molecular genetic systems that are currently available for use in Plasmodium falciparum and Plasmodium berghei, and evaluate the advantages and limitations of these tools. We examine the insights that have been gained into the function of genes that are important during the blood stages of the parasites, which may help to guide the development and improvement of drug therapies and vaccines.

Citing Articles

A scaleable inducible knockout system for studying essential gene function in the malaria parasite.

Ramaprasad A, Blackman M Nucleic Acids Res. 2024; 53(4).

PMID: 39739757 PMC: 11879119. DOI: 10.1093/nar/gkae1274.


CRISPR-Cas13 in malaria parasite: Diagnosis and prospective gene function identification.

Quansah E, Chen Y, Yang S, Wang J, Sun D, Zhao Y Front Microbiol. 2023; 14:1076947.

PMID: 36760507 PMC: 9905151. DOI: 10.3389/fmicb.2023.1076947.


Synchronisation of Plasmodium falciparum and P. knowlesi In Vitro Cultures Using a Highly Specific Protein Kinase Inhibitor.

Ressurreicao M, Moon R, Baker D, van Ooij C Methods Mol Biol. 2022; 2470:101-120.

PMID: 35881342 DOI: 10.1007/978-1-0716-2189-9_10.


CRISPR/Cas9 and genetic screens in malaria parasites: small genomes, big impact.

Ishizaki T, Hernandez S, Paoletta M, Sanderson T, Bushell E Biochem Soc Trans. 2022; 50(3):1069-1079.

PMID: 35621119 PMC: 9246331. DOI: 10.1042/BST20210281.


Methods Used to Investigate the Digestive Vacuole.

Edgar R, Counihan N, McGowan S, de Koning-Ward T Front Cell Infect Microbiol. 2022; 11:829823.

PMID: 35096663 PMC: 8794586. DOI: 10.3389/fcimb.2021.829823.


References
1.
Mueller A, Camargo N, Kaiser K, Andorfer C, Frevert U, Matuschewski K . Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc Natl Acad Sci U S A. 2005; 102(8):3022-7. PMC: 548321. DOI: 10.1073/pnas.0408442102. View

2.
Mota M, Thathy V, Nussenzweig R, NUSSENZWEIG V . Gene targeting in the rodent malaria parasite Plasmodium yoelii. Mol Biochem Parasitol. 2001; 113(2):271-8. DOI: 10.1016/s0166-6851(01)00228-6. View

3.
Janse C, Waters A . The development of genetic tools for dissecting the biology of malaria parasites. Annu Rev Microbiol. 2000; 54:157-85. DOI: 10.1146/annurev.micro.54.1.157. View

4.
Dondorp A, Nosten F, Yi P, Das D, Phyo A, Tarning J . Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009; 361(5):455-67. PMC: 3495232. DOI: 10.1056/NEJMoa0808859. View

5.
Miller J, Murray S, Vaughan A, Harupa A, Sack B, Baldwin M . Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. PLoS One. 2013; 8(4):e60820. PMC: 3623966. DOI: 10.1371/journal.pone.0060820. View