» Articles » PMID: 25974096

Inexpensive, Rapid Prototyping of Microfluidic Devices Using Overhead Transparencies and a Laser Print, Cut and Laminate Fabrication Method

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2015 May 15
PMID 25974096
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.

Citing Articles

Component library creation and pixel array generation with micromilled droplet microfluidics.

McIntyre D, Arguijo D, Kawata K, Densmore D Microsyst Nanoeng. 2025; 11(1):6.

PMID: 39809750 PMC: 11733136. DOI: 10.1038/s41378-024-00839-6.


Automated Nanoliter Volume Assay Optimization on a Cost-Effective Microfluidic Disc.

Nouwairi R, Jones C, Charette M, Holmquist E, Golabek Z, Landers J Anal Chem. 2024; 97(1):300-311.

PMID: 39731577 PMC: 11740179. DOI: 10.1021/acs.analchem.4c04210.


Microphysiological systems for human aging research.

Park S, Laskow T, Chen J, Guha P, Dawn B, Kim D Aging Cell. 2024; 23(3):e14070.

PMID: 38180277 PMC: 10928588. DOI: 10.1111/acel.14070.


Room temperature roll-to-roll additive manufacturing of polydimethylsiloxane-based centrifugal microfluidic device for on-site isolation of ribonucleic acid from whole blood.

Hoang T, Truong H, Han J, Lee S, Lee J, Parajuli S Mater Today Bio. 2023; 23:100838.

PMID: 38033369 PMC: 10681912. DOI: 10.1016/j.mtbio.2023.100838.


On the Application of Microfluidic-Based Technologies in Forensics: A Review.

Bazyar H Sensors (Basel). 2023; 23(13).

PMID: 37447704 PMC: 10346202. DOI: 10.3390/s23135856.


References
1.
Zhu Z, Lu J, Liu S . Protein separation by capillary gel electrophoresis: a review. Anal Chim Acta. 2011; 709:21-31. PMC: 3227876. DOI: 10.1016/j.aca.2011.10.022. View

2.
Yu H, Lu Y, Zhou Y, Wang F, He F, Xia X . A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab Chip. 2008; 8(9):1496-501. DOI: 10.1039/b802778a. View

3.
Vella S, Beattie P, Cademartiri R, Laromaine A, Martinez A, Phillips S . Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012; 84(6):2883-91. PMC: 3320108. DOI: 10.1021/ac203434x. View

4.
Grumann M, Steigert J, Riegger L, Moser I, Enderle B, Riebeseel K . Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed Microdevices. 2006; 8(3):209-14. DOI: 10.1007/s10544-006-8172-x. View

5.
Thorsen T, Maerkl S, Quake S . Microfluidic large-scale integration. Science. 2002; 298(5593):580-4. DOI: 10.1126/science.1076996. View