» Articles » PMID: 25966301

Nanoconfinement Induced Crystal Orientation and Large Piezoelectric Coefficient in Vertically Aligned P(VDF-TrFE) Nanotube Array

Overview
Journal Sci Rep
Specialty Science
Date 2015 May 13
PMID 25966301
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Vertically aligned piezoelectric P(VDF-TrFE) nanotube array comprising nanotubes embedded in anodized alumina membrane matrix without entanglement has been fabricated. It is found that the crystallographic polar axes of the P(VDF-TrFE) nanotubes are oriented along the nanotubes long axes. Such a desired crystal orientation is due to the kinetic selection mechanism for lamellae growth confined in the nanopores. The preferred crystal orientation in nanotubes leads to huge piezoelectric coefficients of the P(VDF-TrFE). The piezoelectric strain and voltage coefficients of P(VDF-TrFE) nanotube array are observed to be 1.97 and 3.40 times of those for conventional spin coated film. Such a significant performance enhancement is attributed to the well-controlled polarization orientation, the elimination of the substrate constraint, and the low dielectric constant of the nanotube array. The P(VDF-TrFE) nanotube array exhibiting the unique structure and outstanding piezoelectric performance is promising for wide applications, including various electrical devices and electromechanical sensors and transducers.

Citing Articles

Polymer Composite Films with P(VDF-TrFE) and Molecular Ferroelectric Tris(hydroxymethyl) Nitromethane: Improvement of Their Ferroelectric Properties.

Escobar-Castillo M, Duman S, Lupascu D Polymers (Basel). 2025; 17(3).

PMID: 39940556 PMC: 11819902. DOI: 10.3390/polym17030354.


Review of Piezoelectric Properties and Power Output of PVDF and Copolymer-Based Piezoelectric Nanogenerators.

Bhadwal N, Ben Mrad R, Behdinan K Nanomaterials (Basel). 2023; 13(24).

PMID: 38133067 PMC: 10745407. DOI: 10.3390/nano13243170.


Scaffold-Guided Crystallization of Oriented α-FAPbI Nanowire Arrays for Solar Cells.

Alaei A, Mohajerani S, Schmelmer B, Rubio T, Bendesky J, Kim M ACS Appl Mater Interfaces. 2023; 15(48):56127-56137.

PMID: 37987696 PMC: 10711707. DOI: 10.1021/acsami.3c09434.


The Preparation, Structural Design, and Application of Electroactive Poly(vinylidene fluoride)-Based Materials for Wearable Sensors and Human Energy Harvesters.

Zhang W, Wu G, Zeng H, Li Z, Wu W, Jiang H Polymers (Basel). 2023; 15(13).

PMID: 37447413 PMC: 10347228. DOI: 10.3390/polym15132766.


Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting.

Wang Y, Hong M, Venezuela J, Liu T, Dargusch M Bioact Mater. 2022; 22:291-311.

PMID: 36263099 PMC: 9556936. DOI: 10.1016/j.bioactmat.2022.10.003.


References
1.
Hu Z, Tian M, Nysten B, Jonas A . Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater. 2008; 8(1):62-7. DOI: 10.1038/nmat2339. View

2.
Li X, Lim Y, Yao K, Tay F, Seah K . P(VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications. Phys Chem Chem Phys. 2012; 15(2):515-20. DOI: 10.1039/c2cp43873a. View

3.
Wu Y, Gu Q, Ding G, Tong F, Hu Z, Jonas A . Confinement Induced Preferential Orientation of Crystals and Enhancement of Properties in Ferroelectric Polymer Nanowires. ACS Macro Lett. 2022; 2(6):535-538. DOI: 10.1021/mz400208k. View

4.
Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E . Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes. Phys Rev Lett. 2006; 97(2):027801. DOI: 10.1103/PhysRevLett.97.027801. View

5.
Chang C, Tran V, Wang J, Fuh Y, Lin L . Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010; 10(2):726-31. DOI: 10.1021/nl9040719. View