» Articles » PMID: 29570639

1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization

Overview
Date 2018 Mar 24
PMID 29570639
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

Citing Articles

Frictional behavior of one-dimensional materials: an experimental perspective.

Yibibulla T, Hou L, Mead J, Huang H, Fatikow S, Wang S Nanoscale Adv. 2024; 6(13):3251-3284.

PMID: 38933866 PMC: 11197433. DOI: 10.1039/d4na00039k.


Recent Advances in Graphene-Enabled Materials for Photovoltaic Applications: A Comprehensive Review.

Jain P, Rajput R, Kumar S, Sharma A, Jain A, Bora B ACS Omega. 2024; 9(11):12403-12425.

PMID: 38524428 PMC: 10955600. DOI: 10.1021/acsomega.3c07994.


Investigation of the structure and dielectric properties of doped barium titanates.

Salem M, Darwish M, Altarawneh A, Alibwaini Y, Ghazy R, Hemeda O RSC Adv. 2024; 14(5):3335-3345.

PMID: 38259985 PMC: 10801699. DOI: 10.1039/d3ra05885a.


MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications.

Pabba D, Satthiyaraju M, Ramasdoss A, Sakthivel P, Chidhambaram N, Dhanabalan S Micromachines (Basel). 2023; 14(6).

PMID: 37374858 PMC: 10303904. DOI: 10.3390/mi14061273.


Recent Advances on SEM-Based Multiphysical Characterization of Nanomaterials.

Qu J, Liu X Scanning. 2021; 2021:4426254.

PMID: 34211620 PMC: 8208868. DOI: 10.1155/2021/4426254.


References
1.
Yang Y, Li X, Wen M, Hacopian E, Chen W, Gong Y . Brittle Fracture of 2D MoSe. Adv Mater. 2016; 29(2). DOI: 10.1002/adma.201604201. View

2.
Chen J, Guo H, He X, Liu G, Xi Y, Shi H . Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. ACS Appl Mater Interfaces. 2015; 8(1):736-44. DOI: 10.1021/acsami.5b09907. View

3.
Nonnenmann S, Leaffer O, Gallo E, Coster M, Spanier J . Finite curvature-mediated ferroelectricity. Nano Lett. 2010; 10(2):542-6. DOI: 10.1021/nl903384p. View

4.
Zhong Z, Wingert M, Strzalka J, Wang H, Sun T, Wang J . Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. Nanoscale. 2014; 6(14):8283-91. DOI: 10.1039/c4nr00547c. View

5.
Wang C, Liao W, Ku N, Li Y, Chen Y, Tu L . Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. Small. 2014; 10(22):4718-25. DOI: 10.1002/smll.201400768. View