» Articles » PMID: 25959462

High Energetic Excitons in Carbon Nanotubes Directly Probe Charge-carriers

Overview
Journal Sci Rep
Specialty Science
Date 2015 May 12
PMID 25959462
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Theory predicts peculiar features for excited-state dynamics in one dimension (1D) that are difficult to be observed experimentally. Single-walled carbon nanotubes (SWNTs) are an excellent approximation to 1D quantum confinement, due to their very high aspect ratio and low density of defects. Here we use ultrafast optical spectroscopy to probe photogenerated charge-carriers in (6,5) semiconducting SWNTs. We identify the transient energy shift of the highly polarizable S33 transition as a sensitive fingerprint of charge-carriers in SWNTs. By measuring the coherent phonon amplitude profile we obtain a precise estimate of the Stark-shift and discuss the binding energy of the S33 excitonic transition. From this, we infer that charge-carriers are formed instantaneously (<50 fs) even upon pumping the first exciton, S11. The decay of the photogenerated charge-carrier population is well described by a model for geminate recombination in 1D.

Citing Articles

Change of Conduction Mechanism in Polymer/Single Wall Carbon Nanotube Composites upon Introduction of Ionic Liquids and Their Investigation by Transient Absorption Spectroscopy: Implication for Thermoelectric Applications.

Krause B, Konidakis I, Stratakis E, Potschke P ACS Appl Nano Mater. 2023; 6(14):13027-13036.

PMID: 37533541 PMC: 10391594. DOI: 10.1021/acsanm.3c01735.


Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer.

Kuang Z, Berger F, Lustres J, Wollscheid N, Li H, Luttgens J J Phys Chem C Nanomater Interfaces. 2021; 125(15):8125-8136.

PMID: 34055124 PMC: 8154833. DOI: 10.1021/acs.jpcc.0c10171.


Optical Voltammetry of Polymer-Encapsulated Single-Walled Carbon Nanotubes.

Horoszko C, Jena P, Roxbury D, Rotkin S, Heller D J Phys Chem C Nanomater Interfaces. 2020; 123(39):24200-24208.

PMID: 32690989 PMC: 7371339. DOI: 10.1021/acs.jpcc.9b07626.


Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication.

Bagsican F, Wais M, Komatsu N, Gao W, Weber L, Serita K Nano Lett. 2020; 20(5):3098-3105.

PMID: 32227963 PMC: 7227006. DOI: 10.1021/acs.nanolett.9b05082.


Diameter-Dependent Optical Absorption and Excitation Energy Transfer from Encapsulated Dye Molecules toward Single-Walled Carbon Nanotubes.

van Bezouw S, Arias D, Ihly R, Cambre S, Ferguson A, Campo J ACS Nano. 2018; 12(7):6881-6894.

PMID: 29965726 PMC: 6083417. DOI: 10.1021/acsnano.8b02213.


References
1.
Schneck J, Walsh A, Green A, Hersam M, Ziegler L, Swan A . Electron correlation effects on the femtosecond dephasing dynamics of E22 excitons in (6,5) carbon nanotubes. J Phys Chem A. 2011; 115(16):3917-23. DOI: 10.1021/jp108345t. View

2.
Park J, Deria P, Olivier J, Therien M . Fluence-dependent singlet exciton dynamics in length-sorted chirality-enriched single-walled carbon nanotubes. Nano Lett. 2013; 14(2):504-11. DOI: 10.1021/nl403511s. View

3.
Gao B, Hartland G, Huang L . Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes. ACS Nano. 2012; 6(6):5083-90. DOI: 10.1021/nn300753a. View

4.
Xiao Y, Nhan T, Wilson M, Fraser J . Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation. Phys Rev Lett. 2010; 104(1):017401. DOI: 10.1103/PhysRevLett.104.017401. View

5.
Lim Y, Yee K, Kim J, Haroz E, Shaver J, Kono J . Coherent lattice vibrations in single-walled carbon nanotubes. Nano Lett. 2006; 6(12):2696-700. DOI: 10.1021/nl061599p. View