Gabbett C, Kelly A, Coleman E, Doolan L, Carey T, Synnatschke K
Nat Commun. 2024; 15(1):4517.
PMID: 38806479
PMC: 11133347.
DOI: 10.1038/s41467-024-48614-5.
Chang M, Qian J, Li Z, Cheng X, Wang Y, Fan L
Nanomaterials (Basel). 2024; 14(5).
PMID: 38470780
PMC: 10935208.
DOI: 10.3390/nano14050450.
Mastrocinque F, Bullard G, Alatis J, Albro J, Nayak A, Williams N
Proc Natl Acad Sci U S A. 2024; 121(12):e2317078121.
PMID: 38466848
PMC: 10962935.
DOI: 10.1073/pnas.2317078121.
Xie P, Sun Y, Chen C, Guo S, Zhao Y, Jiao X
Nanomaterials (Basel). 2023; 13(13).
PMID: 37446517
PMC: 10343552.
DOI: 10.3390/nano13132001.
Zhang A, Lee J, Lieber C
Nano Today. 2023; 38.
PMID: 36970717
PMC: 10038126.
DOI: 10.1016/j.nantod.2021.101135.
Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement.
Su W, Li X, Li L, Yang D, Wang F, Wei X
Nat Commun. 2023; 14(1):1672.
PMID: 36966164
PMC: 10039901.
DOI: 10.1038/s41467-023-37443-7.
Critical challenges and advances in the carbon nanotube-metal interface for next-generation electronics.
Daneshvar F, Chen H, Noh K, Sue H
Nanoscale Adv. 2022; 3(4):942-962.
PMID: 36133297
PMC: 9417627.
DOI: 10.1039/d0na00822b.
Determination of the electronic transport in type separated carbon nanotubes thin films doped with gold nanocrystals.
Swiniarski M, Duzynska A, Gertych A, Czerniak-Losiewicz K, Judek J, Zdrojek M
Sci Rep. 2021; 11(1):16690.
PMID: 34404891
PMC: 8371105.
DOI: 10.1038/s41598-021-96307-6.
Charge Transport in and Electroluminescence from sp-Functionalized Carbon Nanotube Networks.
Zorn N, Berger F, Zaumseil J
ACS Nano. 2021; 15(6):10451-10463.
PMID: 34048654
PMC: 8223481.
DOI: 10.1021/acsnano.1c02878.
Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping.
Wang J, Lei T
Polymers (Basel). 2020; 12(7).
PMID: 32668780
PMC: 7407812.
DOI: 10.3390/polym12071548.
HOT Graphene and HOT Graphene Nanotubes: New Low Dimensional Semimetals and Semiconductors.
Xu L, Wu S, Huang Z, Zhang F, Chuang F, Zhu Z
Nanoscale Res Lett. 2020; 15(1):56.
PMID: 32140792
PMC: 7058775.
DOI: 10.1186/s11671-020-3279-1.
Strong light-matter interactions: a new direction within chemistry.
Hertzog M, Wang M, Mony J, Borjesson K
Chem Soc Rev. 2019; 48(3):937-961.
PMID: 30662987
PMC: 6365945.
DOI: 10.1039/c8cs00193f.
Probing photoresponse of aligned single-walled carbon nanotube doped ultrathin MoS.
Wang R, Wang T, Hong T, Xu Y
Nanotechnology. 2018; 29(34):345205.
PMID: 29869994
PMC: 6086608.
DOI: 10.1088/1361-6528/aaca69.
Analysis of contact resistance in single-walled carbon nanotube channel and graphene electrodes in a thin film transistor.
Baek J, Novak T, Kim H, Lee J, Jang B, Lee J
Nano Converg. 2018; 4(1):35.
PMID: 29291155
PMC: 5736787.
DOI: 10.1186/s40580-017-0130-1.
Films of Carbon Nanomaterials for Transparent Conductors.
Ho X, Wei J
Materials (Basel). 2017; 6(6):2155-2181.
PMID: 28809267
PMC: 5458954.
DOI: 10.3390/ma6062155.
Simulation of carbon nanotube welding through Ar bombardment.
Kucukkal M, Stuart S
J Mol Model. 2017; 23(4):148.
PMID: 28365822
DOI: 10.1007/s00894-017-3323-y.
Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities.
Graf A, Tropf L, Zakharko Y, Zaumseil J, Gather M
Nat Commun. 2016; 7:13078.
PMID: 27721454
PMC: 5062498.
DOI: 10.1038/ncomms13078.
Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
Brady G, Way A, Safron N, Evensen H, Gopalan P, Arnold M
Sci Adv. 2016; 2(9):e1601240.
PMID: 27617293
PMC: 5010372.
DOI: 10.1126/sciadv.1601240.
Sorting centimetre-long single-walled carbon nanotubes.
Yu W, Chae S, An Vu Q, Lee Y
Sci Rep. 2016; 6:30836.
PMID: 27476909
PMC: 4967858.
DOI: 10.1038/srep30836.
Nano-Bioelectronics.
Zhang A, Lieber C
Chem Rev. 2015; 116(1):215-57.
PMID: 26691648
PMC: 4867216.
DOI: 10.1021/acs.chemrev.5b00608.