» Articles » PMID: 25955862

The Mammalian Lectin Galectin-8 Induces RANKL Expression, Osteoclastogenesis, and Bone Mass Reduction in Mice

Overview
Journal Elife
Specialty Biology
Date 2015 May 9
PMID 25955862
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Skeletal integrity is maintained by the co-ordinated activity of osteoblasts, the bone-forming cells, and osteoclasts, the bone-resorbing cells. In this study, we show that mice overexpressing galectin-8, a secreted mammalian lectin of the galectins family, exhibit accelerated osteoclasts activity and bone turnover, which culminates in reduced bone mass, similar to cases of postmenopausal osteoporosis and cancerous osteolysis. This phenotype can be attributed to a direct action of galectin-8 on primary cultures of osteoblasts that secrete the osteoclastogenic factor RANKL upon binding of galectin-8. This results in enhanced differentiation into osteoclasts of the bone marrow cells co-cultured with galectin-8-treated osteoblasts. Secretion of RANKL by galectin-8-treated osteoblasts can be attributed to binding of galectin-8 to receptor complexes that positively (uPAR and MRC2) and negatively (LRP1) regulate galectin-8 function. Our findings identify galectins as new players in osteoclastogenesis and bone remodeling, and highlight a potential regulation of bone mass by animal lectins.

Citing Articles

Galectin-8 modulates human osteoclast activity partly through isoform-specific interactions.

Roy M, Mbous Nguimbus L, Badiane P, Goguen-Couture V, Degrandmaison J, Parent J Life Sci Alliance. 2024; 7(5).

PMID: 38395460 PMC: 10895193. DOI: 10.26508/lsa.202302348.


Glycobiology in osteoclast differentiation and function.

Yang S, He Z, Wu T, Wang S, Dai H Bone Res. 2023; 11(1):55.

PMID: 37884496 PMC: 10603120. DOI: 10.1038/s41413-023-00293-6.


Proteolytic regulation of a galectin-3/Lrp1 axis controls osteoclast-mediated bone resorption.

Zhu L, Tang Y, Li X, Kerk S, Lyssiotis C, Sun X J Cell Biol. 2023; 222(4).

PMID: 36880731 PMC: 9998966. DOI: 10.1083/jcb.202206121.


In Silico Analysis of Glycosaminoglycan-Acemannan as a Scaffold Material on Alveolar Bone Healing.

Sularsih S, Mulawarmanti D, Rahmitasari F, Siswodihardjo S Eur J Dent. 2022; 16(3):643-647.

PMID: 35453170 PMC: 9507609. DOI: 10.1055/s-0041-1736592.


Galectin-8, cytokines, and the storm.

Zick Y Biochem Soc Trans. 2022; 50(1):135-149.

PMID: 35015084 PMC: 9022973. DOI: 10.1042/BST20200677.


References
1.
Thurston T, Wandel M, von Muhlinen N, Foeglein A, Randow F . Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 2012; 482(7385):414-8. PMC: 3343631. DOI: 10.1038/nature10744. View

2.
Xiong J, OBrien C . Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res. 2012; 27(3):499-505. PMC: 3449092. DOI: 10.1002/jbmr.1547. View

3.
Ledeen R, Wu G, Andre S, Bleich D, Huet G, Kaltner H . Beyond glycoproteins as galectin counterreceptors: tumor-effector T cell growth control via ganglioside GM1 [corrected]. Ann N Y Acad Sci. 2012; 1253:206-21. DOI: 10.1111/j.1749-6632.2012.06479.x. View

4.
Reticker-Flynn N, Malta D, Winslow M, Lamar J, Xu M, Underhill G . A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat Commun. 2012; 3:1122. PMC: 3794716. DOI: 10.1038/ncomms2128. View

5.
Alford A, Hankenson K . Matricellular proteins: Extracellular modulators of bone development, remodeling, and regeneration. Bone. 2006; 38(6):749-57. DOI: 10.1016/j.bone.2005.11.017. View