Human Genomics. The Human Transcriptome Across Tissues and Individuals
Authors
Affiliations
Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes—which is most clearly seen in blood—though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.
Comparative analysis of genotype imputation strategies for SNPs calling from RNA-seq.
Guo K, Zhong Z, Zeng H, Zhang C, Chitotombe T, Teng J BMC Genomics. 2025; 26(1):245.
PMID: 40082746 PMC: 11907794. DOI: 10.1186/s12864-025-11411-5.
Chen Y, Davidson N, Kei Wan Y, Yao F, Su Y, Gamaarachchi H Nat Methods. 2025; .
PMID: 40082608 DOI: 10.1038/s41592-025-02623-4.
An Ocular Gene-Set Expression Library for Heritability Partition and Cell Line Enrichment Analyses.
Hysi P, Hammond C Invest Ophthalmol Vis Sci. 2025; 66(3):11.
PMID: 40042876 PMC: 11892535. DOI: 10.1167/iovs.66.3.11.
Mapping naturally presented T cell antigens in medulloblastoma based on integrative multi-omics.
Velz J, Freudenmann L, Medici G, Dubbelaar M, Mohme M, Ghasemi D Nat Commun. 2025; 16(1):1364.
PMID: 39904979 PMC: 11794601. DOI: 10.1038/s41467-025-56268-0.
Porter R, An S, Gavilan M, Nagai M, Murata-Nakamura Y, Zhou B Cell Rep. 2025; 44(1):115213.
PMID: 39817906 PMC: 11864812. DOI: 10.1016/j.celrep.2024.115213.