» Articles » PMID: 25893565

Mitochondrial Genome of Turbinaria Ornata (Sargassaceae, Phaeophyceae): Comparative Mitogenomics of Brown Algae

Overview
Journal Curr Genet
Specialty Genetics
Date 2015 Apr 21
PMID 25893565
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Turbinaria ornata (Turner) J. Agardh is a perennial brown alga native to coral reef ecosystems of tropical areas of the Pacific and Indian Ocean. Very little is known about its organellar genome structure. In the present work, the complete mitochondrial genome sequence of T. ornata was determined and compared with other reported brown algal mtDNAs. The circular mitogenome of 34,981 bp contains a basic set of 65 mitochondrial genes. The structure and organization of T. ornata mitogenome is very similar to Sargassum species. Turbinaria ornata genes overlap by a total of 164 bp in 12 different locations from 1 to 66 bp, and the non-coding sequences are 1872 bp, constituting approximate 5.35 % of the genome. The total spacer size has positive correlation with the brown algal mitogenome size with the correlation coefficient of 0.7972. Several regions displaying greater inconsistency (rnl-trnK spacer, cox2 gene, cox3-atp6 spacer, rps14-rns middle region and trnP-rnl spacer) have been identified in brown algal mtDNAs. The observed uncertainty regarding the position and support values of some branches might be closely associated with the heterogeneity of evolutionary rate.

Citing Articles

Screening and verification of extranuclear genetic markers in green tide algae from the Yellow Sea.

Cai C, Gu K, Zhao H, Steinhagen S, He P, Wichard T PLoS One. 2021; 16(6):e0250968.

PMID: 34061855 PMC: 8168861. DOI: 10.1371/journal.pone.0250968.


Complete mitochondrial genome of (Sargassaceae, Phaeophyceae).

Kim K, Choi J, Yoon H, Jang H, Hong J Mitochondrial DNA B Resour. 2021; 3(1):424-425.

PMID: 33474190 PMC: 7800866. DOI: 10.1080/23802359.2018.1457993.


Transcriptomic and Proteomic Analysis of Mannitol-metabolism-associated Genes in Saccharina japonica.

Chi S, Wang G, Liu T, Wang X, Liu C, Jin Y Genomics Proteomics Bioinformatics. 2020; 18(4):415-429.

PMID: 33248278 PMC: 8242268. DOI: 10.1016/j.gpb.2018.12.012.


Organelle inheritance and genome architecture variation in isogamous brown algae.

Choi J, Graf L, Peters A, Cock J, Nishitsuji K, Arimoto A Sci Rep. 2020; 10(1):2048.

PMID: 32029782 PMC: 7005149. DOI: 10.1038/s41598-020-58817-7.


Understanding the Evolution of Mitochondrial Genomes in Phaeophyceae Inferred from Mitogenomes of Ishige okamurae (Ishigeales) and Dictyopteris divaricata (Dictyotales).

Liu F, Zhang Y, Bi Y, Chen W, Moejes F J Mol Evol. 2019; 87(1):16-26.

PMID: 30604018 DOI: 10.1007/s00239-018-9881-5.


References
1.
Phillips N, Kapraun D, Garreta A, Ribera Siguan M, Rull J, Salvador Soler N . Estimates of nuclear DNA content in 98 species of brown algae (Phaeophyta). AoB Plants. 2012; 2011:plr001. PMC: 3064507. DOI: 10.1093/aobpla/plr001. View

2.
Wyman S, Jansen R, Boore J . Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004; 20(17):3252-5. DOI: 10.1093/bioinformatics/bth352. View

3.
Whelan S, Goldman N . A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001; 18(5):691-9. DOI: 10.1093/oxfordjournals.molbev.a003851. View

4.
Liu F, Pang S . Complete mitochondrial genome of the invasive brown alga Sargassum muticum (Sargassaceae, Phaeophyceae). Mitochondrial DNA A DNA Mapp Seq Anal. 2014; 27(2):1129-30. DOI: 10.3109/19401736.2014.933333. View

5.
Gomez-Valero L, Latorre A, Silva F . The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. Mol Biol Evol. 2004; 21(11):2172-81. DOI: 10.1093/molbev/msh232. View