» Articles » PMID: 24801114

Spider Genomes Provide Insight into Composition and Evolution of Venom and Silk

Abstract

Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk.

Citing Articles

LC-AMP-I1, a novel venom-derived antimicrobial peptide from the wolf spider .

Wang J, Liu X, Song Y, Liu Z, Tang X, Tan H Antimicrob Agents Chemother. 2024; 69(1):e0042424.

PMID: 39620694 PMC: 11784185. DOI: 10.1128/aac.00424-24.


Peptide Toxin Diversity and a Novel Antimicrobial Peptide from the Spider .

Wang K, Mwangi J, Cao K, Wang Y, Gao J, Yang M Toxins (Basel). 2024; 16(11).

PMID: 39591221 PMC: 11597926. DOI: 10.3390/toxins16110466.


Discovery of from Infected Spiders and Analysis of the Surrounding Fungal Entomopathogen Community.

Joseph R, Masoudi A, Valdiviezo M, Keyhani N J Fungi (Basel). 2024; 10(10).

PMID: 39452646 PMC: 11508666. DOI: 10.3390/jof10100694.


Three Novel Spider Genomes Unveil Spidroin Diversification and Hox Cluster Architecture: Ryuthela nishihirai (Liphistiidae), Uloborus plumipes (Uloboridae) and Cheiracanthium punctorium (Cheiracanthiidae).

Schoneberg Y, Audisio T, Ben Hamadou A, Forman M, Kral J, Korinkova T Mol Ecol Resour. 2024; 25(1):e14038.

PMID: 39435585 PMC: 11646306. DOI: 10.1111/1755-0998.14038.


Enlightening the toxinological dark matter of spider venom enzymes.

Dresler J, Herzig V, Vilcinskas A, Luddecke T NPJ Biodivers. 2024; 3(1):25.

PMID: 39271930 PMC: 11399385. DOI: 10.1038/s44185-024-00058-2.


References
1.
Hilbrant M, Damen W, McGregor A . Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development. 2012; 139(15):2655-62. DOI: 10.1242/dev.078204. View

2.
Clement H, Olvera A, Rodriguez M, Zamudio F, Palomares L, Possani L . Identification, cDNA cloning and heterologous expression of a hyaluronidase from the tarantula Brachypelma vagans venom. Toxicon. 2012; 60(7):1223-7. DOI: 10.1016/j.toxicon.2012.08.018. View

3.
Guerette P, Ginzinger D, Weber B, Gosline J . Silk properties determined by gland-specific expression of a spider fibroin gene family. Science. 1996; 272(5258):112-5. DOI: 10.1126/science.272.5258.112. View

4.
Pepato A, Da Rocha C, Dunlop J . Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol. 2010; 10:235. PMC: 2933639. DOI: 10.1186/1471-2148-10-235. View

5.
DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C . A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491-8. PMC: 3083463. DOI: 10.1038/ng.806. View