Hussein M, Al-Ameed K, Almansori A, Owaid N
RSC Adv. 2024; 14(46):34428-34434.
PMID: 39473797
PMC: 11519775.
DOI: 10.1039/d4ra04534c.
Abbasi F, Sardarian A
Sci Rep. 2024; 14(1):7206.
PMID: 38532063
PMC: 10966014.
DOI: 10.1038/s41598-024-57608-8.
Ramachandran P, Singh A, Walker H, Hamann H
Molecules. 2024; 29(1).
PMID: 38202849
PMC: 10780903.
DOI: 10.3390/molecules29010268.
Lo R, Pykal M, Schneemann A, Zboril R, Fischer R, Jayaramulu K
J Phys Chem C Nanomater Interfaces. 2023; 127(31):15454-15460.
PMID: 37588814
PMC: 10426341.
DOI: 10.1021/acs.jpcc.3c01821.
Braddock D, Rowley B, Lickiss P, Fussell S, Qamar R, Pugh D
J Org Chem. 2023; 88(14):9853-9869.
PMID: 37432502
PMC: 10367078.
DOI: 10.1021/acs.joc.3c00585.
Development of fluorous boronic acid catalysts integrated with sulfur for enhanced amidation efficiency.
Fridianto K, Wen Y, Lo L, Lam Y
RSC Adv. 2023; 13(25):17420-17426.
PMID: 37304775
PMC: 10251487.
DOI: 10.1039/d3ra03300g.
A diselenobis-functionalized magnetic catalyst based on iron oxide/silica nanoparticles suggested for amidation reactions.
Taheri-Ledari R, Qazi F, Saeidirad M, Maleki A
Sci Rep. 2022; 12(1):14865.
PMID: 36050366
PMC: 9436994.
DOI: 10.1038/s41598-022-19030-w.
Catalytic -methyl amidation of carboxylic acids under cooperative conditions.
Yingxian L, Wei C, Linchun Z, Ji-Quan Z, Yonglong Z, Chun L
RSC Adv. 2022; 12(32):20550-20554.
PMID: 35919177
PMC: 9284536.
DOI: 10.1039/d2ra03255d.
Highly efficient catalyst-free domino conjugate addition, decarboxylation and esterification/amidation of coumarin carboxylic acid/esters with pyrazolones: a green chemistry approach.
Lakshmi S, Singh V, Chowhan L
RSC Adv. 2022; 10(23):13866-13871.
PMID: 35492966
PMC: 9051535.
DOI: 10.1039/d0ra01906b.
Methyltrimethoxysilane (MTM) as a Reagent for Direct Amidation of Carboxylic Acids.
Braddock D, Davies J, Lickiss P
Org Lett. 2022; 24(5):1175-1179.
PMID: 35084870
PMC: 9007566.
DOI: 10.1021/acs.orglett.1c04265.
Merging the Versatile Functionalities of Boronic Acid with Peptides.
Tan Y, Wu J, Song L, Zhang M, Hipolito C, Wu C
Int J Mol Sci. 2021; 22(23).
PMID: 34884766
PMC: 8657650.
DOI: 10.3390/ijms222312958.
Catalytic and non-catalytic amidation of carboxylic acid substrates.
Pedrood K, Bahadorikhalili S, Lotfi V, Larijani B, Mahdavi M
Mol Divers. 2021; 26(2):1311-1344.
PMID: 34120303
DOI: 10.1007/s11030-021-10252-0.
Direct synthesis of amides from nonactivated carboxylic acids using urea as nitrogen source and Mg(NO) or imidazole as catalysts.
Chhatwal A, Lomax H, Blacker A, Williams J, Marce P
Chem Sci. 2020; 11(22):5808-5818.
PMID: 32832055
PMC: 7416778.
DOI: 10.1039/d0sc01317j.
Amide Synthesis through the In Situ Generation of Chloro- and Imido-Phosphonium Salts.
Irving C, Floreancig J, Laulhe S
ACS Omega. 2020; 5(25):15734-15745.
PMID: 32637849
PMC: 7331200.
DOI: 10.1021/acsomega.0c02309.
Boronic acid-DMAPO cooperative catalysis for dehydrative condensation between carboxylic acids and amines.
Ishihara K, Lu Y
Chem Sci. 2018; 7(2):1276-1280.
PMID: 29910884
PMC: 5975839.
DOI: 10.1039/c5sc03761a.
Borate esters: Simple catalysts for the sustainable synthesis of complex amides.
Sabatini M, Boulton L, Sheppard T
Sci Adv. 2017; 3(9):e1701028.
PMID: 28948222
PMC: 5609808.
DOI: 10.1126/sciadv.1701028.
Unique physicochemical and catalytic properties dictated by the BNO ring system.
Noda H, Furutachi M, Asada Y, Shibasaki M, Kumagai N
Nat Chem. 2017; 9(6):571-577.
PMID: 28537596
DOI: 10.1038/nchem.2708.
Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes.
Krause T, Baader S, Erb B, Goossen L
Nat Commun. 2016; 7:11732.
PMID: 27282773
PMC: 4906407.
DOI: 10.1038/ncomms11732.