» Articles » PMID: 25847470

Synthetic Active Site Model of the [NiFeSe] Hydrogenase

Overview
Journal Chemistry
Specialty Chemistry
Date 2015 Apr 8
PMID 25847470
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe('S2Se2')(CO)3] (H2'S2Se2' = 1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni('S2Se2')] with [Fe(CO)3bda] (bda = benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe('S2Se2')(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe('S2Se2')(CO)3] with the previously reported thiolate analogue [NiFe('S4')(CO)3] (H2'S4' = H2xbsms = 1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe('S2Se2')(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe('S2Se2')(CO)3] and [NiFe('S4')(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution.

Citing Articles

Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from .

Evans R, Beaton S, Rodriguez Macia P, Pang Y, Wong K, Kertess L Chem Sci. 2023; 14(32):8531-8551.

PMID: 37592998 PMC: 10430524. DOI: 10.1039/d2sc05641k.


Biomimetic heterobimetallic architecture of Ni(ii) and Fe(ii) for CO hydrogenation in aqueous media. A DFT study.

Shiekh B RSC Adv. 2022; 9(57):33107-33116.

PMID: 35529114 PMC: 9073165. DOI: 10.1039/c9ra07139c.


Applications of MSe (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion.

Zhou H, Li X, Li Y, Zheng M, Pang H Nanomicro Lett. 2021; 11(1):40.

PMID: 34137999 PMC: 7770788. DOI: 10.1007/s40820-019-0272-2.


The roles of chalcogenides in O protection of Hase active sites.

Yang X, Darensbourg M Chem Sci. 2021; 11(35):9366-9377.

PMID: 34094202 PMC: 8161538. DOI: 10.1039/d0sc02584d.


Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes.

Dalle K, Warnan J, Leung J, Reuillard B, Karmel I, Reisner E Chem Rev. 2019; 119(4):2752-2875.

PMID: 30767519 PMC: 6396143. DOI: 10.1021/acs.chemrev.8b00392.


References
1.
Weber K, Kramer T, Shafaat H, Weyhermuller T, Bill E, van Gastel M . A functional [NiFe]-hydrogenase model compound that undergoes biologically relevant reversible thiolate protonation. J Am Chem Soc. 2012; 134(51):20745-55. DOI: 10.1021/ja309563p. View

2.
Bassegoda A, Madden C, Wakerley D, Reisner E, Hirst J . Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J Am Chem Soc. 2014; 136(44):15473-6. DOI: 10.1021/ja508647u. View

3.
Volbeda A, Charon M, Piras C, Hatchikian E, Frey M, Fontecilla-Camps J . Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995; 373(6515):580-7. DOI: 10.1038/373580a0. View

4.
Rahaman A, Ghosh S, Unwin D, Basak-Modi S, Holt K, Kabir S . Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe(CO)(μ-edt)] and Phosphine Derivatives [Fe(CO) (PPh) (μ-edt)] ( = 1, 2) and [Fe(CO)(κ-diphosphine)(μ-edt)] as Proton Reduction Catalysts. Organometallics. 2014; 33(6):1356-1366. PMC: 3985925. DOI: 10.1021/om400691q. View

5.
Reisner E, Powell D, Cavazza C, Fontecilla-Camps J, Armstrong F . Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. J Am Chem Soc. 2009; 131(51):18457-66. DOI: 10.1021/ja907923r. View